Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 20:30

BC=25cm

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20cm

Phan Huy Bằng
5 tháng 1 2022 lúc 20:31

AH=12

Quốc Anh Nguyễn Lê
Xem chi tiết
Quốc Anh Nguyễn Lê
16 tháng 3 2022 lúc 18:17

nhanh giúp mình với đang cần gấp

Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 21:52

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

Kami no Kage
Xem chi tiết
Nguyễn Bảo Trâm
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Lucy Cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 20:42

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC=9+12+15=36\left(cm\right)\)

Kiburowuo Tomy
Xem chi tiết
👁💧👄💧👁
25 tháng 2 2021 lúc 20:18

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:36

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=25-9=16(cm)

Vậy: CH=16cm

Lưu Bảo Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2021 lúc 21:50

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Anh Nguyen
Xem chi tiết
Nguyễn Huy Tú
28 tháng 7 2021 lúc 15:26

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm 

-> BC = CH + BH = 9 + 16 = 25 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm

Áp dụng đlí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

=> AC = 15 cm 

Trương Huy Hoàng
28 tháng 7 2021 lúc 15:33

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

AC2 = AH2 + HC2 = 122 + 92 = 225

\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:

AC2 = BC.HC

\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)

Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:

BC2 = AB2 + AC2 

\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400

\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)

Vậy ...

Chúc bn học tốt!

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 0:41

\(AC=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(BC=\dfrac{AC^2}{CH}=\dfrac{15^2}{9}=\dfrac{225}{9}=25\left(cm\right)\)

\(AB=\sqrt{25^2-15^2}=20\left(cm\right)\)

nguyễn thảo hân
Xem chi tiết
Bách Phạm Vũ
Xem chi tiết
Tt_Cindy_tT
19 tháng 3 2022 lúc 11:41

a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:

BC2=AB2+AC2

=>BC2=92+122=81+144=225.

=>BC=15(cm)

b, Xét tg ABD và tg EBD, có: 

góc ABD= góc DBE(tia phân giác)

BD chung.

góc A= góc E(=90o)

=>tg ABD= tg EBD(ch-gn)