Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sư Phụ Sơn Tùng 6a
Xem chi tiết
Lê Nhật Khôi
Xem chi tiết
Đào Thu Hoà
2 tháng 7 2019 lúc 11:26

\(\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow2018\left(a+b\right)=3ab.\)(*)

Dễ thấy Vế trái  của (*) chia hết cho 1009 \(\Rightarrow3ab⋮1009\Rightarrow ab⋮1009\)(Do (3;1009)=1 )

Trường hợp 1: Cả 2 số a,b đều chia hết cho 1009 

Khi đó: \(\hept{\begin{cases}a=1009m\\b=1009n\end{cases}\left(m,n\inℕ^∗;m\ge n\right).}\)Thế vào (*) ta có:

\(2018\left(1009m+1009n\right)=3.1009m.1009n\)

\(\Leftrightarrow2\left(m+n\right)=3mn\)

\(\Leftrightarrow6m-9mn+6n-4=-4\)

\(\Leftrightarrow3m\left(2-3n\right)-2\left(2-3n\right)=-4\)

\(\Leftrightarrow\left(3m-2\right)\left(3n-2\right)=4\)

Mà \(m\ge n\Rightarrow3m-2\ge3n-2\);   \(m,n\inℕ^∗\Rightarrow3n-2>0\)hay \(3m-2\ge3n-2>0\)

Suy ra có 2 trường hợp

\(\hept{\begin{cases}3m-2=4\\3n-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\n=1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1009.2\\b=1009.1\end{cases}\Leftrightarrow}}\hept{\begin{cases}a=2018\\b=1009\end{cases}}\)

Thế vào phương trình đã cho ta được: \(\frac{1}{2018}+\frac{1}{1009}=\frac{3}{2018}\)( Thỏa mãn)

\(\hept{\begin{cases}3m-2=2\\3n-2=2\end{cases}\Leftrightarrow m=n=\frac{4}{3}}\)(loại)

Trường hợp 2: Trong hai số a,b chỉ có một số duy nhất chia hết cho 1009

Do vai trò của a,b như nhau nên Giả sử \(a⋮1009\Rightarrow a=1009k\left(k\inℕ^∗\right).\)

Khi đó thế vào (*) ta có: \(2018\left(1009k+b\right)=3.1009k.b\)

\(\Leftrightarrow2.\left(1009k+b\right)=3kb\Leftrightarrow2018k=b\left(3k-2\right)\)(**)

Mà vế trái  của biểu thức trên chia hết cho 1009. Lại có b không chia hết cho 1009

Suy ra \(3k-2⋮1009\)

Khi đó \(3k-2=1009t\left(t\inℕ^∗\right)\)

\(\Leftrightarrow3k=3.336t+t+2\)

\(\Leftrightarrow3\left(k-336t\right)=t+2\)

Suy ra \(t+2⋮3\)

Với \(t+2=3\Leftrightarrow t=1\)khi đó:\(3\left(k-336\right)=3\Leftrightarrow k=337\Rightarrow a=1009.337=340033\)

Thế vào hệ phương trình đã cho \(\frac{1}{1009.337}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=674\)(thỏa mãn)

Với \(t+2=6\Leftrightarrow t=4\)Khi đó: \(3\left(k-336.4\right)=6\Leftrightarrow k=1346\Rightarrow a=1009.1346=1358114\)

Thế vào phương trình đầu đã cho : \(\frac{1}{1009.1346}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=673\)(thỏa mãn)

Với \(t+2>6\Leftrightarrow t>4\Rightarrow3k-2=1009t>1009.4\Rightarrow k>1346\)

\(\Rightarrow2018k< 2019k-1346\Leftrightarrow2018k< 673\left(3k-2\right)\Rightarrow\frac{2018k}{3k-2}< 673\)

Từ (**) ta có: \(b=\frac{2018k}{3k-2}< 673\le672\Rightarrow\frac{1}{b}\ge\frac{1}{672}>\frac{3}{2018}.\)

Mà \(\frac{1}{b}=\frac{3}{2018}-\frac{1}{a}< \frac{3}{2018}.\)Nên với \(1+2\ge6\)thì không có giá trị của a,b thỏa mãn đề bài.

Vậy các nghiệm nguyên của phương trình đã cho là

\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right).\)

Trần Phúc Khang
2 tháng 7 2019 lúc 18:27

Ta có \(\frac{1}{a}=\frac{3}{2018}-\frac{1}{b}=\frac{3b-2018}{2018b}\)

=> \(3a=\frac{6054b}{3b-2018}=\frac{2018\left(3b-2018\right)+2018^2}{3b-2018}=2018+\frac{2018^2}{3b-2018}\)là số nguyên

=> \(\frac{2018^2}{3b-2018}\)là số nguyên 

Mà 3b-2018 chia 3 dư 1

=> \(3b-2018\in\left\{-2;1;4;1009;4036;2018^2\right\}\)

=> \(b\in\left\{672;673;674;1009;2018;1358114\right\}\)

Thay vào ta được cặp a,b và kết hợp với ĐK \(a\ge b>0\)

\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right)\)

Hỏa Long
Xem chi tiết
Trình Nguyễn Quang Duy
Xem chi tiết
Kiệt Nguyễn
5 tháng 6 2019 lúc 9:51

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

Kiệt Nguyễn
5 tháng 6 2019 lúc 9:52

Bài 1b) có thể giải gọn hơn nhuư thế này

Kiệt Nguyễn
5 tháng 6 2019 lúc 9:53

Cách gọn:

1b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\)trái dấu

Mà \(x^2+4\ge0\) nên \(\left|x\right|-3< 0\Leftrightarrow\left|x\right|< 3\)

\(\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

WinWin - Noob Minecraft...
Xem chi tiết
songoku
Xem chi tiết
Bùi Phúc Hoàng Linh
Xem chi tiết
.
7 tháng 8 2020 lúc 15:34

a) 3/x + 1/3 = y/3

3/x = y/3 - 1/3

3/x = y-1/3

=> 3 . 3 = x (y - 1)

=> 9 = x (y - 1)

=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}

Ta có bảng sau:

x-9-3-1139
y-1-1-3-9921
y0-2-81032

Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.

b) x/6 - 1/y = 1/2

1/y = x/6 - 1/2

1/y = x/6 - 3/6

1/y = x-3/6

=> 6 = y (x - 3)

=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}

...

Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.

Khách vãng lai đã xóa
Xyz OLM
7 tháng 8 2020 lúc 15:38

Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

=> \(\frac{3}{x}=\frac{y-1}{3}\)

=> x(y - 1) = 9

Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)

Lập bảng xét các trường hợp ta có

x19-1-93-3
y - 191-9-13-3
y102-804-2

Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)

b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)

=> \(\frac{xy-6}{6y}=\frac{1}{2}\)

=> 2(xy - 6) = 6y

=> xy - 6 = 3y

=> xy - 3y = 6

=> y(x - 3) = 6

Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)

Lập bảng xét các trường hợp

y16-1-623-2-3
x - 361-6-132-3-2
x94-3-26501

Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh Minh
7 tháng 8 2020 lúc 15:46

a/

\(\Leftrightarrow9+x=xy\Leftrightarrow9=x\left(y-1\right)\Rightarrow x=\frac{9}{y-1}.\)

Khách vãng lai đã xóa
Jenny Dolly Marion_ Love...
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
nguyễn  minh nguyệt
Xem chi tiết