Tìm các số nguyên a,b biết: \(\frac{1}{a}+\frac{b}{6}=\frac{1}{3}\)với a≠0
Tìm các số nguyên a,b biết:
a) \(\frac{1}{a}=\frac{1}{6}+\frac{b}{3}\)
b) \(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)
Tìm các số a,b nguyên biết \(\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}\)và \(a\ge b>0\)
\(\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow2018\left(a+b\right)=3ab.\)(*)
Dễ thấy Vế trái của (*) chia hết cho 1009 \(\Rightarrow3ab⋮1009\Rightarrow ab⋮1009\)(Do (3;1009)=1 )
Trường hợp 1: Cả 2 số a,b đều chia hết cho 1009
Khi đó: \(\hept{\begin{cases}a=1009m\\b=1009n\end{cases}\left(m,n\inℕ^∗;m\ge n\right).}\)Thế vào (*) ta có:
\(2018\left(1009m+1009n\right)=3.1009m.1009n\)
\(\Leftrightarrow2\left(m+n\right)=3mn\)
\(\Leftrightarrow6m-9mn+6n-4=-4\)
\(\Leftrightarrow3m\left(2-3n\right)-2\left(2-3n\right)=-4\)
\(\Leftrightarrow\left(3m-2\right)\left(3n-2\right)=4\)
Mà \(m\ge n\Rightarrow3m-2\ge3n-2\); \(m,n\inℕ^∗\Rightarrow3n-2>0\)hay \(3m-2\ge3n-2>0\)
Suy ra có 2 trường hợp
\(\hept{\begin{cases}3m-2=4\\3n-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\n=1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1009.2\\b=1009.1\end{cases}\Leftrightarrow}}\hept{\begin{cases}a=2018\\b=1009\end{cases}}\)
Thế vào phương trình đã cho ta được: \(\frac{1}{2018}+\frac{1}{1009}=\frac{3}{2018}\)( Thỏa mãn)
\(\hept{\begin{cases}3m-2=2\\3n-2=2\end{cases}\Leftrightarrow m=n=\frac{4}{3}}\)(loại)
Trường hợp 2: Trong hai số a,b chỉ có một số duy nhất chia hết cho 1009
Do vai trò của a,b như nhau nên Giả sử \(a⋮1009\Rightarrow a=1009k\left(k\inℕ^∗\right).\)
Khi đó thế vào (*) ta có: \(2018\left(1009k+b\right)=3.1009k.b\)
\(\Leftrightarrow2.\left(1009k+b\right)=3kb\Leftrightarrow2018k=b\left(3k-2\right)\)(**)
Mà vế trái của biểu thức trên chia hết cho 1009. Lại có b không chia hết cho 1009
Suy ra \(3k-2⋮1009\)
Khi đó \(3k-2=1009t\left(t\inℕ^∗\right)\)
\(\Leftrightarrow3k=3.336t+t+2\)
\(\Leftrightarrow3\left(k-336t\right)=t+2\)
Suy ra \(t+2⋮3\)
Với \(t+2=3\Leftrightarrow t=1\)khi đó:\(3\left(k-336\right)=3\Leftrightarrow k=337\Rightarrow a=1009.337=340033\)
Thế vào hệ phương trình đã cho \(\frac{1}{1009.337}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=674\)(thỏa mãn)
Với \(t+2=6\Leftrightarrow t=4\)Khi đó: \(3\left(k-336.4\right)=6\Leftrightarrow k=1346\Rightarrow a=1009.1346=1358114\)
Thế vào phương trình đầu đã cho : \(\frac{1}{1009.1346}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=673\)(thỏa mãn)
Với \(t+2>6\Leftrightarrow t>4\Rightarrow3k-2=1009t>1009.4\Rightarrow k>1346\)
\(\Rightarrow2018k< 2019k-1346\Leftrightarrow2018k< 673\left(3k-2\right)\Rightarrow\frac{2018k}{3k-2}< 673\)
Từ (**) ta có: \(b=\frac{2018k}{3k-2}< 673\le672\Rightarrow\frac{1}{b}\ge\frac{1}{672}>\frac{3}{2018}.\)
Mà \(\frac{1}{b}=\frac{3}{2018}-\frac{1}{a}< \frac{3}{2018}.\)Nên với \(1+2\ge6\)thì không có giá trị của a,b thỏa mãn đề bài.
Vậy các nghiệm nguyên của phương trình đã cho là
\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right).\)
Ta có \(\frac{1}{a}=\frac{3}{2018}-\frac{1}{b}=\frac{3b-2018}{2018b}\)
=> \(3a=\frac{6054b}{3b-2018}=\frac{2018\left(3b-2018\right)+2018^2}{3b-2018}=2018+\frac{2018^2}{3b-2018}\)là số nguyên
=> \(\frac{2018^2}{3b-2018}\)là số nguyên
Mà 3b-2018 chia 3 dư 1
=> \(3b-2018\in\left\{-2;1;4;1009;4036;2018^2\right\}\)
=> \(b\in\left\{672;673;674;1009;2018;1358114\right\}\)
Thay vào ta được cặp a,b và kết hợp với ĐK \(a\ge b>0\)
\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right)\)
tìm tất cả các số nguyên x biết:
a, -2<x<0
b, \(\frac{-1}{2}< \frac{x}{2}< 0\)
c, \(-\frac{1}{3}< \frac{x}{6}< \frac{1}{6}\)
d |x|<3
bài 2
cho A=\(\frac{2}{x-1}\)
a, tìm điều kiện của x để A là một phân số
b, tìm A khi x=2; x=3
c, tìm điều kiện của x để A là một số nguyên (A thuộc Z)
Bài 1:
a)Tính tổng và tính tích các số nguyên x biết: \(x^2\)-15\(\le\)16
b)Tìm tất cả các số nguyên x biết: (|x|-3).(\(x^2\)+4)<0
Bài 2: Tìm các số nguyên x biết:
a)(x-3).(2x-5)=6
b)(x-1).(x+4)<0
c)\(5^{x+2}\)-\(5^{x-1}\)=3100
d)\(3^{x+1}\)-\(3^{x-2}\)=702
Bài 3:Tìm số nguyên x biết:
a)\(\frac{-8}{x}\)=\(\frac{-x}{18}\)
b)\(\frac{x+1}{22}=\frac{6}{x}\)
c)\(\frac{2x-1}{2}=\frac{5}{x}\)
d)\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
e)\(\frac{10x+5}{6}=\frac{5}{x+1}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Cách gọn:
1b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\)trái dấu
Mà \(x^2+4\ge0\) nên \(\left|x\right|-3< 0\Leftrightarrow\left|x\right|< 3\)
\(\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
Cần giúp đỡ gấp. Cảm ơn m.n trước nha <3
a) Tìm x biết:\(x-2\sqrt{x}=0\left(x\ge0\right)\)
b)Tìm số nguyên x và y biết \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
c) Tìm số nguyên x để A có giá trị là 1 số nguyên biết A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
d) Cho tam giác ABC có các góc A,B,C tỉ lệ với 7;5;3. Các goc ngoài tương ứng tỉ lệ với các số nào.
Tìm x biết \(5^x+5^{x+2}=650\)
Tìm x thuộc Z thỏa mãn
[5x-3]<2
[3x+1]>3
Tìm các số nguyên x;y biết rằng
\(a,\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(b,2x+\frac{1}{7}=\frac{1}{y}\)
\(c,\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
cho \(B=\frac{\sqrt{x+1}}{\sqrt{x}-3}\).Tìm x thuộc Z để B có giá trị là 1 số nguyên dương
Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5};\frac{3}{4};\frac{1}{6}\).Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)và b khác 0 . Chứng minh c=0
Chứng minh rằng \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}>10\)
Giúp mik với,trước 5h nha
Tìm các số nguyên x,y biết rằng:
a)\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
b)\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
a) 3/x + 1/3 = y/3
3/x = y/3 - 1/3
3/x = y-1/3
=> 3 . 3 = x (y - 1)
=> 9 = x (y - 1)
=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}
Ta có bảng sau:
x | -9 | -3 | -1 | 1 | 3 | 9 |
y-1 | -1 | -3 | -9 | 9 | 2 | 1 |
y | 0 | -2 | -8 | 10 | 3 | 2 |
Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.
b) x/6 - 1/y = 1/2
1/y = x/6 - 1/2
1/y = x/6 - 3/6
1/y = x-3/6
=> 6 = y (x - 3)
=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}
...
Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.
Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
=> \(\frac{3}{x}=\frac{y-1}{3}\)
=> x(y - 1) = 9
Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)
Lập bảng xét các trường hợp ta có
x | 1 | 9 | -1 | -9 | 3 | -3 |
y - 1 | 9 | 1 | -9 | -1 | 3 | -3 |
y | 10 | 2 | -8 | 0 | 4 | -2 |
Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
=> \(\frac{xy-6}{6y}=\frac{1}{2}\)
=> 2(xy - 6) = 6y
=> xy - 6 = 3y
=> xy - 3y = 6
=> y(x - 3) = 6
Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)
Lập bảng xét các trường hợp
y | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
x - 3 | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
x | 9 | 4 | -3 | -2 | 6 | 5 | 0 | 1 |
Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)
a/
\(\Leftrightarrow9+x=xy\Leftrightarrow9=x\left(y-1\right)\Rightarrow x=\frac{9}{y-1}.\)
cho biểu thức B = \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+.....+\left(\frac{1}{3}\right)^{2013}\)
tìm các số nguyên a để 3a+5 chia hết a+3
tìm số nguyên x :
\(\frac{x+5}{100}+\frac{x+5}{99}=\frac{x+5}{98}+\frac{x+5}{97}\)
tìm 2 số x; y biết chúng khác 0 mà tổng, hiệu, tích của chúng tỉ lệ với 6;1;35
Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right)\div\frac{1}{6-4a}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên
c) Tìm a để P<0
d) Tìm P biết \(2a^2-a-3=0\)
3. Xác định x thỏa mãn:
a) (x-(3/5).(x+2/7)>0
b) (x+(3/2).(x-(3/2)<0
c) (2x-(1/2).(3x-(1/3)<0
d) (5x-(1/2) : ( 1,25 - 3x)
4. Tìm x thuộc Z để : \(\frac{x-5}{9-x}\)là số hữu tỉ dương.
5.Tìm các số nguyên x, y biết :
a) \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
b) \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
6. Tìm x thuộc Z để các số sau là số nguyên và tính giá trị đó:
a) A=\(\frac{3x-2}{x+3}\)
b)B=\(\frac{3x+9}{x-4}\)
c) C=\(\frac{6x+5}{2x-1}\)
7. Tìm x biết:
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Bạn nào onl giải hộ mình bài nào cũng được miễn là đúng. Mình cần gấp.