CMR vs mọi số nguyên dương thì:
3n+3+2n+3-3n+2+2n+2 chia hết cho 6
CMR: Với mọi số nguyên dương n thì :
a)A=3n+3+3n+1+2n+2+2n+1 chia hết cho 6
b)B=3n+3-2n+3+3n+2-2n+1 chia hết cho 10
(nghiêm cấm hành vi làm đc câu 1 câu 2 viết tương tự xin cảm ơn)
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
dùng phương pháp qui nạp
cmr mọi số nguyên dương n thì:
a. 3^(3n+1)+40n-67 chia hết cho 64
b.3^(3n+2)+5*2^(3n+1) chia hết cho 19
c.2^(n+2)*3^n+5n-4 chia hết cho 25
d. 7^(n+2)+8^(2n+1) chia hết cho 57
Cmr: Với mọi số nguyên n thì
A=(2n+1)×(n^2- 3n-1)- 2n^3+1 chia hết cho 5.
mk làm luôn nhá ^^
tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)
=\(-5n^2-5n\)
Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)
\(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n
\(\Rightarrowđpcm\)
Chứng minh rằng : Với mọi số nguyên dương n thì 3n+2 – 2n+2 +3n -2n chia hết cho 10
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
CMR với mọi số nguyên n thì
a, (n^2+3n-1)(n+3)-n^3 +2 chia hết cho 5
b,(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
c,n(n+5)-(n-3)(n+3) luôn chia hết cho 6
Trần Thị Thùy Dung tham khảo đây nha:
Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath
............
Trần Thị Thùy DungCho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
https://olm.vn/hoi-dap/detail/195347678157.html
Chúng minh rằng với mọi số nguyên n thì: 2n^3-3n^2+n chia hết cho 6
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)
\(=n\left(2n^2+2n+n+1\right)\)
\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n-2+3\right)\)
\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)
Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)
Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)
Do đó: \(3n\left(n+1\right)⋮3\)
\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)
\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)
\(=n\left(2n^2-3n+1\right)\)
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(2n-1\right)\)
\(=n\left(n-1\right)\left(2n+2-3\right)\)
\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)
\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\)
Ta có :
\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)
\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)
Ta lại có :
\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)
\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)
\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)
Ta có:
\(2n^3-3n^2+n\\ =2n^3-2n^2-n^2-n\\ =2n^2\left(n-1\right)-n\left(n-1\right)\\ =\left(n-1\right)\left(2n^2-n\right)\\ =\left(n-1\right)n\left(2n-1\right)\\ =\left(n-1\right)n\left(2n+2\right)-3\left(n-1\right)n\\ =2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n\)
Vì \(n-1;n;n+1\) là ba số nguyên liên tiếp nên có ít nhất một số chia hết cho \(3\) và một số chia hết cho \(2\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\\ \Rightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)
Lại có \(n-1;n\) là hai số nguyên liên tiếp nên sẽ có một số chia hết cho \(2\)
\(\Rightarrow\left(n-1\right)n⋮2\\ \Rightarrow3\left(n-1\right)n⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta được:\(2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n⋮6\)
Hay \(2n^3-3n^2+n⋮6\)