Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trung iu toán
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 7:49
Đặng Diễm Quỳnh
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
NTP-Hoa(#cđln)
10 tháng 7 2018 lúc 9:10

mk làm luôn nhá ^^

tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)

                                                  =\(-5n^2-5n\)

 Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)

        \(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n

\(\Rightarrowđpcm\)

Lâm Văn Trúc Lâm
Xem chi tiết
Đào Minh Phi
6 tháng 2 2022 lúc 17:21

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

Khách vãng lai đã xóa
Trần Thị Thùy Dung
Xem chi tiết
Mạnh Châu
30 tháng 6 2017 lúc 22:03

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

Trần Thị Thùy Dung
Cỏ dại
Xem chi tiết
Hồ Minh Phi
23 tháng 10 2018 lúc 22:03

https://olm.vn/hoi-dap/detail/195347678157.html

Hoàng Minh Quang
Xem chi tiết
Nguyễn Xuân Thành
2 tháng 9 2023 lúc 16:35

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)

\(=n\left(2n^2+2n+n+1\right)\)

\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)

Do đó: \(3n\left(n+1\right)⋮3\)

\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)

Nguyễn Đức Trí
2 tháng 9 2023 lúc 16:46

\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)

\(=n\left(2n^2-3n+1\right)\)

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(2n-1\right)\)

\(=n\left(n-1\right)\left(2n+2-3\right)\)

\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)

\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\) 

Ta có :

\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)

Ta lại có :

\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)

\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)

\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)

Mai Trung Hải Phong
2 tháng 9 2023 lúc 16:47

Ta có:

\(2n^3-3n^2+n\\ =2n^3-2n^2-n^2-n\\ =2n^2\left(n-1\right)-n\left(n-1\right)\\ =\left(n-1\right)\left(2n^2-n\right)\\ =\left(n-1\right)n\left(2n-1\right)\\ =\left(n-1\right)n\left(2n+2\right)-3\left(n-1\right)n\\ =2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n\)

Vì \(n-1;n;n+1\) là ba số nguyên liên tiếp nên có ít nhất một số chia hết cho \(3\) và một số chia hết cho \(2\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\\ \Rightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Lại có \(n-1;n\) là hai số nguyên liên tiếp nên sẽ có một số chia hết cho \(2\)

\(\Rightarrow\left(n-1\right)n⋮2\\ \Rightarrow3\left(n-1\right)n⋮6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta được:\(2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n⋮6\)

Hay \(2n^3-3n^2+n⋮6\)