giải phương trình sau:
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)7
Giải phương trình sau:
\(\frac{x-1009}{1001}\)+ \(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)= 7
x-1009/1001+x-4/1003+x+2010/1005=7
((x-1009/1001)-1))+((x-4/1003)-2)+((x+2010/1005)-4))=0
(x-2010/1001)+(x-2010/1003)+(x-2010/1005)=0
(x-2010)*(1/1001+1/1003+1/1005)=0
okk!!!!!!!!!!!!!!!
Giải phương trình: \(P=\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
ta có :
\(\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
hay \(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\Leftrightarrow x-2010=0\)
hay x =2010
Vậy phương trình có nghiệm x = 2010
X-1009/1001+x-4/1003+x+2010/1005=7
\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)=7
⇔\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)-7=0
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔(x-2010)\(\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)\)=0
⇔x-2010=0
⇔x=2010
Vậy x=2010
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
⇔ \(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}-7=0\)
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)\)\(+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\)\(\frac{x+2010-4020}{1005}=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔\(\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
⇔ \(x-2010=0\left(do\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}>0\right)\)
⇔ \(x=2010\)
Vậy S = {2010}
gpt: x-1009 / 1001 + x-4 / 1003 + x+2010/1005 = 7
\(\Leftrightarrow\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
\(\Leftrightarrow\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
\(\Leftrightarrow x=2010\)
\(\dfrac{x-1009}{1001}+\dfrac{x+4}{1003}+\dfrac{x+2010}{1005}=7\)
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
\(\Leftrightarrow\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}-7=0\)
\(\Leftrightarrow\left(\dfrac{x-1009}{1001}-1\right)+\left(\dfrac{x-4}{1003}-2\right)+\left(\dfrac{x+2010}{1005}-4\right)=0\)
\(\Leftrightarrow\dfrac{x-2010}{1001}+\dfrac{x-2010}{1003}+\dfrac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{1001}+\dfrac{1}{1003}+\dfrac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Rightarrow x=2010\)
Vậy....
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
\(\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}-7=0\)
\(\left(\dfrac{x-1009}{1001}-1\right)+\left(\dfrac{x-4}{1003}-2\right)+\left(\dfrac{x+2010}{1005}-4\right)=0\)
\(\dfrac{x-2010}{1001}+\dfrac{x-2010}{1003}+\dfrac{x-2010}{1005}=0\)
\(\left(x-2010\right)\left(\dfrac{1}{1001}+\dfrac{1}{1003}+\dfrac{1}{1005}\right)=0\)
\(x-2010=0\)
\(x=2010\)
Vậy x = 2010
x-1009/1001+x-4/1003+x+2010/1005=7
Giups mk nha đang cần gấp
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Leftrightarrow\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
\(\Leftrightarrow\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\frac{x+2010-4020}{1005}=0\)
\(\Leftrightarrow\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=2010\)
V...\(S=\left\{2010\right\}\)
^^
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Leftrightarrow\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)
\(\Leftrightarrow\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\frac{x+2010-4020}{1005}=0\)
\(\Leftrightarrow\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=2010\)
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Rightarrow\left(\frac{x-1003}{1007}-1\right)+\left(\frac{x-4}{1003}-1\right)+(\frac{x+2010}{1005}-4)=0\)
\(\Rightarrow\frac{x-2010}{1007}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Rightarrow\left(x-2010\right)\left(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\right)\)
Vì
\(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\ne0\Rightarrow X-2010=0\Rightarrow x=2010\)
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\frac{x-1003}{1007}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
\(\frac{x-2010}{1003}+\frac{x-2010}{1005}+\frac{x-2010}{1007}=0\)
\(\left(x-2010\right)\left(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\right)=0\)
\(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\ne0\)
\(\Rightarrow x-2010=0\Rightarrow x=2010\)
tim x
a. x-10/2010 + x-3/2003 + x-2/2002 =-3
b. x-1009/1001 + x-4/1003 + x+10/1005 =7
a)\(\frac{x-10}{2010}\)+ \(\frac{x-3}{2003}\)+\(\frac{x-2}{2002}\)= -3
=> \(\frac{x-10}{2010}\)+1+ \(\frac{x-3}{2003}\)+ 1+\(\frac{x-2}{2002}\)+1= -3 +1 + 1 + 1
=> \(\frac{x-10+2010}{2010}\)+ \(\frac{x-3+2003}{2003}\)+\(\frac{x-2+2002}{2002}\)= 0
=>\(\frac{x+2000}{2010}\)+ \(\frac{x+2000}{2003}\)+\(\frac{x+2000}{2002}\)= 0
=>(x + 2000)(\(\frac{1}{2010}\)+ \(\frac{1}{2003}\)+\(\frac{1}{2002}\)) = 0
=> x + 2000 = 0
hoặc
=>\(\frac{1}{2010}\)+ \(\frac{1}{2003}\)+\(\frac{1}{2002}\)= 0
Mà : \(\frac{1}{2010}\)> 0
\(\frac{1}{2003}\)> 0
\(\frac{1}{2002}\)> 0
Cộng vế theo vế của các bất đẳng thức trên , ta có:
\(\frac{1}{2010}\)+\(\frac{1}{2003}\)+\(\frac{1}{2002}\)>0
=> x + 2000 = 0
=> x = 0 -2000 = -2000
Vậy x = -2000
Nhường các bạn câu 2 :(
X-1009/ 1001 + x-14/ 1003 + x - 2000/ 1005 = 7