Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nhật Minh Anh
Xem chi tiết
Legend
Xem chi tiết
Đoàn Đức Hà
19 tháng 4 2021 lúc 16:42

Đặt \(d=\left(1-3n,2n-3\right)\).

Suy ra \(\hept{\begin{cases}1-3n⋮d\\2n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2-6n⋮d\\6n-9⋮d\end{cases}}\Rightarrow\left(2-6n\right)+\left(6n-9\right)=-7⋮d\)

\(\Rightarrow\orbr{\begin{cases}d=1\\d=7\end{cases}}\).

Để \(\frac{1-3n}{2n-3}\)là phân số tối giản thì \(d=1\).

\(d\ne7\Rightarrow1-3n\ne7k\Leftrightarrow n\ne\frac{1-7k}{3},\left(k\inℤ\right)\).

Khách vãng lai đã xóa
Luffy Không Rõ Họ Tên
Xem chi tiết
Phạm Nguyễn Tất Đạt
9 tháng 5 2016 lúc 6:33

Gọi d là ƯCLN(9n+5;2n+1)

Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d

     =>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d

     =>18n+10\(⋮\)d;18n+9\(⋮\)d

=>[(18n+10)-(18n+9)]\(⋮\)d

=>[18n+10-18n-9]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)

Đề phải là nEN* hoặc n>1

Nguyễn Thị Như Quỳnh
Xem chi tiết
Nguyễn Thị Như Quỳnh
20 tháng 2 2017 lúc 21:20

giúp mình với vì thời gian có hạn

bui hang trang
Xem chi tiết
Nie =)))
14 tháng 5 2017 lúc 15:53

a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên  thì 2n+3 \(⋮\) 4n+1 

Ta có   2n+3 \(⋮\)4n+1

 =>      4n+6 \(⋮\)4n+1

=> (4n+1)+5 \(⋮\)4n+1

=>            5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }

Ta có bảng :

4n+1-1-515
4n-2-604
nkhông cókhông có0            1          

Mà n \(\in\)N

+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)

+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )

Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

b, Gọi d \(\in\)UC(2n+3;4n+1)

Ta có  2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d

          4n+1 \(⋮\)d

Suy ra 2(2n+3) - (4n+1) \(⋮\)d

              4n+6 - 4n+1   \(⋮\)d

                            5     \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }

+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5

                            (5n+5).(n+4) \(⋮\)5

                                       n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)

Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5

Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản 

Đạt Phạm
24 tháng 7 2017 lúc 21:27

1, A=\(\frac{2n+3}{\text{4n + 1}}\)

A=\(\frac{4n+6}{\text{4n + 1}}\)

A=\(\frac{4n+1+5}{\text{4n + 1}}\)

A=1+\(\frac{5}{\text{4n + 1}}\)

Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.

Vậy n\(\in\){0;1} thì A là số tự nhiên

Vanh Leg
20 tháng 12 2018 lúc 21:37

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

Yến Nhi Libra Virgo HotG...
Xem chi tiết
Đức Phạm
6 tháng 4 2017 lúc 6:29

Câu 3 : 

b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1 

=> 2n + 8 chia hết cho 2n - 1  

mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1 

=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }

=> 2n - 1 \(\in\) { 1 ,3 , 9 }

=> 2n\(\in\){ 2 , 4 ,10}

=> n\(\in\){ 1, 2 ,5 }

=> P\(\in\){ 5 , 2 , 1 }

Vì P là nguyên tố nên P\(\in\){ 5,2}

vậy n\(\in\){ 1 , 2 }

Câu 4 : 

Trần Duy Vương
Xem chi tiết
Lê Châu
30 tháng 3 2017 lúc 19:35

bài này mk học rồi

Trần Duy Vương
Xem chi tiết
Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa