Cho tam giác ABC lấy D thuộc AB, E thuộc AC sao cho góc ACD bằng góc ABE. CM AB/AC=AE/AD
1.Cho tam giác ABC có AB=AC . Kẻ tia phân giác AD của góc BAC (D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC.Chứng minh rằng:
a)Tam giác ABE=Tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
2.Cho tam giác ABC có AB<AC .Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng :
a)Tam giác ADF=Tam giác ACD
b)Tam giác BDF=Tam giác EDC
c)BF=AC
d)AD vuông góc FC
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh:góc ABE= góc ACD
b) Gọi I là giao điểm của BE và CD. tam giác IBC là tam giác gì? Vì sao?
Thịnh ơi giúp mik :(
a) Xét tam giác ABE và tam giác ACD:
AB = AC (Tam giác ABC cân tại A).
AD = AE (gt).
\(\widehat{DAE}\) chung.
\(\Rightarrow\) Tam giác ABE = Tam giác ACD (c - g - c).
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng).
b) Ta có: \(\widehat{B}=\widehat{ABE}+\widehat{EBC};\widehat{C}=\widehat{ACD}+\widehat{DCB}.\)
Mà \(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A); \(\widehat{ABE}=\widehat{ACD}\left(cmt\right).\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}.\)
\(\Rightarrow\) Tam giác IBC cân tại I.
1. Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy E sao cho AD=AE.
a, CmBE=CD
b,Cm góc ABE = góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? vì sao?
2.Cho tam giác ABC vuông ở C, có góc A=60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB(K thuộc AB). Kẻ BD vuông góc với tia AE(D thuộc tia AE). Cm:
a, AC=AK và AE vuông góc CK
b, KB=KA
c,EB>AC
d,Ba đường thẳng AC,BD,KE cùng đi qua một điểm.
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC . Có góc A <90°. Trên nửa mặt phẳng bờ AB chứa điểm C. Vẽ tia Ax vuông góc với AB,lấy D thuộc Ax sao cho AD=AB.Tredn nửa mặt phẳng bờ AC lấy điểm B. Vẽ tia Ay vuông góc với AC . Lấy E thuộc Ay sao cho AC=AE
a) CM tam giác ADC = ABE
b) CM BE=CD
c) CM BE vuông góc với CD
Cho tam giác abc(ab<ac) kẻ tia phân giác ad (d thuộc bc) trên cạnh ac lấy e sao cho ae=ab b) cm: ad vuông góc với be C) cm: db<dc
a, gọi giao điểm AD và BE là F
theo bài ra có AD phân giác \(\) của \(\angle\left(BAC\right)\)
=>AF là phân giác của \(\angle\left(BAE\right)\)(1)
lại có AE=AB=>tam giác ABE cân tại A (2)
từ(1)(2)=>tam giác ABE cân tại A có AF là phân giác nên đồng thời cũng là đường cao\(=>AF\perp BE\)
hay \(AD\perp BE\)
b, theo BDT tam giác ABD \(=>BD< AB+AD\)
tương tự trong tam giác ACD \(=>CD< AD+AC\)
\(=>BD-CD< AB+AD-AD-AC=AB-AC< 0\)(do AB<AC)
\(=>BD-CD< 0=>BD< CD\)
cho tam giác ABC,góc A =120 độ.Trên tia đối tia AB lấy điểm D sao cho góc ACD = góc ACB.Trên tia đối tia AC lấy điểm E sao cho góc ABE = góc ABC.Chứng minh AD=AE
Cho tam giác ABC có góc A = 120 độ trên tia đối của AB lấy điểm D sao cho góc ACD = góc ACB. Trên tia đối của AC lấy điểm E sao cho góc ABE = góc ABC. CMR : AD = AE
cho tam giác abc có góc A=120 độ. Trên tia đối của tia AB lấy D sao cho góc ACD= góc ACB. Trên tia đối của tia AC lấy điểm E sao cho góc ABE= góc ABC. CMR AD=AE