Phương trình bậc nhất hai ẩn -3x+18y=0 có mấy nghiệm nguyên
Câu 1: Phương trình bậc nhất hai ẩn -3x+18y=0 có mấy nghiệm
Luôn có vô số nghiệm
\(\left\{{}\begin{matrix}y=\frac{3x}{18}\\x=\frac{18y}{3}\end{matrix}\right.\)
Phương trình bậc nhất hai ẩn \(-3x+18y=0\) có bao nhiêu nghiệm nguyên?
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn: -3x + 2y > 0.
Vẽ đường thẳng (d): -3x + 2y = 0
Lấy điểm A(1; 1), ta thấy A ∉(d) và có: -3.1 + 2.1 < 0 nên nửa mặt phẳng bờ (d) không chưá A là miền nghiệm của bất phương trình. (miền hình không bị tô đậm)
Câu 1: (0,25đ) Cặp số (1; 2) là một nghiệm của phương trình bậc nhất 2 ẩn nào sau đây? B. - 2x - y = 0 C. 2x - y = 0 D. 3x - y = 0 A. 2x + y = 1. Câu 2: (0,25đ) Trọng các phương trình bậc nhất 2 ẩn sau, hệ phương trình nào có vô nghiệm? xy = 1 (xy = 1 (xy = 1 xy = 1 B. -2x - v = 0 CDA (2x + y = 1 2x- 2y = 2 | 2x + y = 0 Câu 3: (0,25đ) Đồ thị hàm số y = -2x? đi qua điểm nào sau đây? A. (2; -1) B. (-1; -2) C. (1; 2) D. (-1; 2) Câu 4: (0 , 25đ) Đồ thị hàm số y = ax² đi qua điểm M (-3; -18) Khi đó a bằng: C. 3 D. - 3 A. -2 Câu 5: (0,25đ) Phương trình 2x? - 3x - 4 = 0 có A. A = - 23 Câu 6: (0,25đ) Trong các phương trình bậc hai ẩn sau, phương trình nào vô nghiệm? A. x - 2x + 1 = 0 B. B. A = 9 C. A = 41 D. A = 17 B. x -4x + 3 = 0 C. 2r - 2x + 5 = 0 D. 2x - 2.x-7 = 0 Câu 7: (0,25đ) Cho (O ) đường kính AB, tiếp tuyến Ax như hình vẽ bên. Quan sát hình vẽ cho biết câu nào sai trong các yêu cầu sau: A. Hai góc nội tiếp chắc chắn cung BC là BAC và BDC B. XAD là góc tạo bởi tia tiếp tuyến và dây cung C. ADB là góc nội tiếp chắn nửa đường tròn D. ACB là góc nhọn Câu 8: (0,25đ) Tứ giác ABCD nội tiếp đường tròn (O) có Â = 100 °. Số đo góc C là : A. 80 ° B. 100 ° C. 180 ° D. 50 °
Tìm bất phương trình bậc nhất hai ẩn trong các bất phương trình sau và chỉ ra một nghiệm của bất phương trình bậc nhất hai ẩn đó:
a) \(5x + 3y < 20\)
b) \(3x - \frac{5}{y} > 2\)
a) \(5x + 3y < 20\)
Đây là bất phương trình bậc nhất hai ẩn.
Chọn \(x = 0;y = 0\)
Khi đó bất phương trình tương đương với 5.0+3.0
Vậy (0;0) là một nghiệm của bất phương trình trên.
b) \(3x - \frac{5}{y} > 2\)
Đây không là bất phương trình bậc nhất hai ẩn vì có ẩn y ở mẫu.
Cho phương trình 3x – 2y = 5
Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có nghiệm duy nhất.
Ta có: 3x – 2y = 5 ⇔
Để được một hệ có nghiệm duy nhất thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc khác 3/2 .
Chẳng hạn: ⇔ -x + 2y = 4
Khi đó ta có hệ có một nghiệm duy nhất.
Cho phương trình 3x – 2y = 5
Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có vô số nghiệm.
Ta có: 3x – 2y = 5 ⇔
Để được một hệ có vô số nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc bằng - 5/2 .
Chẳng hạn: ⇔ 6x – 4y = 10
Khi đó ta có hệ có vô số nghiệm.
Một phương trình bậc nhất một ẩn có mấy nghiệm?
A. Vô nghiệm
B. Luôn có 1 nghiệm duy nhất
C. Có vô số nghiệm
D. Cả 3 phương án trên
Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.
(lưu ý vì đây là phương trình bậc nhất một ẩn nên a ≠ 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0.)
Chọn đáp án B.
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau:
\(\left\{ \begin{array}{l}x - 2y + 3 \le 0\\x + 3y > - 2\\x \le 0\end{array} \right.\)
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.