Cho tam giác ABC, M là một điểm bất kì . Tìm GTNN của biểu thức: \(P=MA^2+MB^2+MC^2\)
Cho tam giác ABC nhọn và M là điểm bất kì nằm trong tam giác. Tìm GTNN của biểu thức:
T = MA . BC + MB . CA + MC . AB
Gọi \(I\)là giao điểm của \(BC\)và \(AM\)còn \(H\)và \(K\)theo thứ tự là hình chiếu của \(B\)và \(C\)trên \(AM\)
Ta có: \(BI\ge BH\)và \(CI\ge CH\)( quan hệ đường xiên - đường vuông góc )
Đẳng thức xảy ra khi \(AM\perp BC\)
Suy ra:
\(MA.BC=MA.\left(BI+BC\right)\ge MA.\left(BH+CK\right)\)
\(\Leftrightarrow MA.BC\ge MA.BH+MA.CK\)
\(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(1\right)\)
Chứng minh tương tự ta cũng có: \(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(2\right)\)
( Đẳng thức xảy ra khi \(MB\perp CA\))
\(MC.AB\ge2S_{MCA}+2S_{MBC}\) \(\left(3\right)\)
Cộng từng vế với ba bất đẳng thức \(\left(1\right)\)và \(\left(2\right)\)và \(\left(3\right)\)ta được:
\(MA.BC+MB.CA+MC.AB\ge4.\left(S_{MAB}+S_{MCA}+S_{ABC}\right)\)
Đặt \(S=S_{ABC}\)thì \(S\)không đổi và \(T\ge4S\)
Vậy: \(T_{min}=4S\)khi \(M\)là trực tâm \(\Delta ABC\)
Dựng hình bình hành AMBN. Lúc đó \(MA.BC=BN.BC\ge2S_{BCN};MB.CA\ge2S_{CAN}\)
Suy ra \(MA.BC+MB.CA\ge2\left(S_{BCN}+S_{CAN}\right)=2\left(S_{ABC}+S_{AMB}\right)\) (Vì tứ giác AMBN là hình bình hành)
Tương tự: \(MB.CA+MC.AB\ge2\left(S_{ABC}+S_{BMC}\right);MC.AB+MA.BC\ge2\left(S_{ABC}+S_{CMA}\right)\)
Do vậy \(2\left(MA.BC+MB.CA+MC.AB\right)\ge2\left(3S_{ABC}+S_{AMB}+S_{BMC}+S_{CMA}\right)=8S_{ABC}\)
Suy ra \(2T\ge8S_{ABC}\Rightarrow T\ge4S_{ABC}.\)
Dấu "=" xảy ra khi và chỉ khi BN vuông góc BC, AN vuông góc AC <=> M là trực tâm \(\Delta\)ABC.
trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(1;1) , B(4;2) , C(2;-2).Gọi M là điểm bất kì trên đường thẳng AB, hãy tìm GTNN của \(P=^{\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|}\)
Trong mặt phẳng (P) cho tam giác ABC. M là một điểm bất kì thuộc mặt phẳng (P). Chứng minh rằng biểu thức \(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M ?
\(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}=3\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+2\left(\overrightarrow{MC}-\overrightarrow{MB}\right)\)
\(=3\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+2\left(\overrightarrow{MC}+\overrightarrow{BM}\right)=3\overrightarrow{BA}+2\overrightarrow{BC}\) (không phụ thuộc vào vị trí điểm M).
Cho tam giác ABC vuông tại A cố định, có AB=3, AC=4. Một điểm M bất kì nằm trong mặt phẳng chứa tam giác ABC. GTNN của \(\sqrt{2}.MA+MB+MC\) cho mình biết cách làm luôn nha
Để căn2.MA+MB+MC nhỏ nhất thì MA+MB+MC nhỏ nhất
Để MA+MB+MC nhỏ nhất thì A trùng với M.Khi đó căn2.MA+MC+MB=7
Cho tam giác ABC đều. M là điểm bất kì trong tam giác
chứng minh rằng: MA, MB, MC thỏa mãn bất đẳng thức tam giác
Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Gọi M là một điểm bất kì thuộc cung BC.
a) Chứng minh rằng MA = MB + MC
b) Gọi D là giao điểm của MA và BC. Chứng minh rằng \(\frac{MD}{MB}+\frac{MD}{MC}=1\)
c) Tính tổng MA^2 + MB^2 MC ^2 theo R.
cho tam giác đều abc cạnh a, M là điểm bất kì trong tam giác. CMR MA+MB+MC>a\(\sqrt{3}\)/2
cho tma giác ABC . gọi M là một điểm bất kif của tam giác đó.
CMR : MA +MB +MC > 1/2 (AB + AC + BC)
Cho tam giác ABC và M là một điểm bất kì thuộc miền trong của tam giác
a) CM MB+MC<AB+DC
b) Áp dụng câu a) CM : P<MA+MB+MC<2P
Trong đó \(\frac{AB+BC+CA}{2}\)là nửa chu vi tam giác ABC