\(P=MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2=3\overrightarrow{MG}^2+\overrightarrow{GA}^2+\overrightarrow{GB}^2+\overrightarrow{GC}^2+2.\overrightarrow{MG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3MG^2+GA^2+GB^2+GC^2\ge GA^2+GB^2+GC^2\)
Dấu "=" xảy ra <=> M \(\equiv\) G