Cho tam giác ABC, M là một điểm bất kì . Tìm GTNN của biểu thức: \(P=MA^2+MB^2+MC^2\)
cho tam giác ABC . tìm tập hợp điểm M trong các trường hợp sau :
a, \(\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
b, \(\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
Cho tam giác ABC. Tìm quỹ tích điểm M sao cho:
a.\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) = \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b. \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
c. \(\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MC}\right|\) = \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
cho tam giác ABC. Tìm tập hợp diểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm Tập hợp các điểm M sao cho \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|\)
Tìm tập hợp điểm m thỏa mãn:
a) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|\)
b)\(\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho ΔABC . Tìm tập hợp điểm M thoả mãn :
a, \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
c,\(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
d, \(\left|\overrightarrow{4MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
giải hộ mik bài này với
Cho △ABC . Hãy xác định điểm M sao cho :
a) vec tơ MA - vec tơ MB + vec tơ MC = vec tơ 0 b) vec tơ MB - vec tơ MC + vec tơ BC = vec tơ 0
c) vec tơ MB - vec tơ MC + vec tơ MA = vec tơ 0 d) vec tơ MA - vec tơ MB - vec tơ MC = vec tơ 0
e) vec tơ MC + vec tơ MA - vec tơ MB + vec tơ BC = vec tơ 0