cho \(\Delta ABC\), cân tại A và 2 đường trung tuyến BM , CN cắt nhau tại K .
CM: a, BM=CN
b, AK là đường trung tuyến của MN
c,BC<\(4\cdot KM\)
cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K.
a, CM : BM=NC.
b, CM : AK là đường trung trực của MN.
c, CM : BC < 4KM
cho tam giác ABC cân tại A.Trung tuyến BM,CN cắt nhau tại G(MϵAC,NϵAB).Chứng minh:
a)BM=CN
b)▲BMN=▲CGM
c)AG là đường trung trực của MN
d)MN//BC
e)AG giao BC tại I.lấy K,Q sao cho lần lượt là trung điểm của HK và AQ.Gọi E là trung điểm của KQ.Chứng minh K,H,E thẳng hàng
Cho tam giác ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN; b) \(\Delta GBC\) cân tại G.
a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.
Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.
Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.
b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:
\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.
Vậy tam giác GBC cân tại G.
Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K.
a) Chứng minh ∆BNC = ∆CMB.
b) Chứng minh AK ^ BC.
c) Gọi H là giao điểm của AK và BC. Tính AH biết AB = 5cm, BC = 6cm.
a. vì tam giác ABC cân tại A
=> AB = AC
=> góc ABC = góc ACB
BM và CN là 2 đường trung tuyến của tam giác ABC
=> N và M lần lượt là trung điểm của AB và AC
=> AN = BN
AM = CM
mà AB = AC
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
BC chung
góc ABC = góc ACB (cmt)
BN = CM (cmt)
=> tam giác BNC = tam giác CMB (c-g-c) (đpcm)
b. tam giác BNC = tam giác CMB (cmt)
=> BM = CN ( 2 cạnh tương ứng)
mà BM giao CN tại K
=> K là trọng tâm của tam giác ABC
=> BK = CK
Xét Δ AKB và Δ AKC:
AK chung
AB = AC (cmt)
BK = CK (cmt)
=> Δ AKB = Δ AKC (c-c-c)
=> góc BAK = góc CAK (2 góc tương ứng)
=> AK là tia phân giác góc BAC
=> AK là đường trung trực của Δ ABC
=> AK ⊥ BC (đpcm)
c. Vì AK (AH) ⊥ BC
=> tam giác ABH vuông tại H
mà AH là đường trung trực của tam giác ABC
=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Áp dùng định lí Py - ta - go vào tam giác ABH:
AB2 = BH2 + AH2
52 = 32 + AH2
AH2 = 52 - 32 = 25 - 9 = 16
=> AK = 4cm (AH > 0)
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a CM tam giác ABM tam giác CAN b MN song song BC c BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
a) Ta có: AN = NB = 1/2AB (gt)
AM = MC = 1/2AC (gt)
mà AB = AC (gt)
=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN
có: AM = AN (gt)
\(\widehat{A}\): chung
AB = AC (gt)
=> tam giác ABM = tam giác ACN (c.g.c)
b) Ta có: AN = NB (gt)
AM = MC (gt)
=> NM là đường trung bình của tam giác ABC
=> MN // BC
c) Ta có: tam giác ABM = tam giác ACN (cmt)
=> \(\widehat{ABM}=\widehat{ACN}\)
Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
\(\widehat{B}=\widehat{C}\) (gt)
=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC
Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC
=> KD \(\equiv\)AD => A, K, D thẳng hàng
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a) CM tam giác ABM=tam giác CAN b) MN song song BC c) BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
a, Xét \(\Delta ABM\)và \(\Delta CAN\) có
AB = AC ( \(\Delta\)cân )
\(\widehat{A}\) chung
AN = AM
\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)
Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh : BC < 4KM
cho tam giác abc cân tại A, Các đường trung tuyến BM và CN
a)CMR: tam giác BMC=CNB
b)CMR: MN//BC
c)BM cắt CN tại G. CMR: AG vuông góc MN
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến.
a) Chứng minh rằng BM = CN
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC
Tham khảo:
a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.
Vì AB = AC (tính chất tam giác cân)
\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)
Xét tam giác AMB và tam giác ANC ta có :
AM = AN (cmt)
AB = AC
Góc A chung
\( \Rightarrow \Delta AMB =\Delta ANC\)
\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )
b) Vì BM và CN là các đường trung tuyến
Mà I là giao điểm của BM và CN
\( \Rightarrow \) I là trọng tâm của tam giác ABC
\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC
\( \Rightarrow \) H là trung điểm của BC