X^2=y-1,y^2=z-1 và z^2=x-1
Ai giải quyết được tick 🌚
x ≠ y ≠ z thoả mãn 1/z+1/y+1/z=0.Tính M= yz/(x^2+2yz)+xz/(y^2+2xz)+xy/(z^2+2xy) ai giải được mình tick nhiệt tình cho
1. Cho x,y,z là số #0 và x+1/y=y+1/z=z+1/x
Chứng minh rằng : hoặc x=y=z hoặc x2.y2.z2=1
AI GIẢI GIÚP MÌNH , MÌNH SẼ TICK - NHANH NHANH NHA ! MÌNH CẦN GẤP LẮM
giải hệ pt x+y+z+1/x+1/y+1/z=51/4 và x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=771/16
Nguyễn Huy Thắng nối đúng cậu vào \(fx\)nha
I, a Cho x^2+y^2=2 CMR 2(x+1)(y+1) chia hết cho (x+y)(x+y+2).
b Cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y). CMR z^2= (x^2+y^2) : 2
Ai làm được mk hứa sẽ tick. Cảm ơn trước nha!!!!
tìm x,y,z biết a . x/y+z+1 = y/z+x+1 = z/x+Y-2 = x +Y+Z
b, 21x=9y ; 15x=12z và 2x-y+z=33
c . 2x=y-3 = z/5 và 2x + 2y - z/2 = -9
d 1/2x-1 = 2/3y-1 = 3/4z-1 và 3x + 2y - z =4
TỚ CẦN GẤP ! giúp tớ với !
giải đc mấy câu cũng được , càng nhiều càng tốt
(x^3+y^3+z^3-3xyz)/[(x+y)^2+(x+z)^2+(y-z)^2].Đố bạn nào giải được (Tớ sẽ tick cho/sau đó tớ sẽ cho đáp số)
x^3−y^3+z^3+3xyz
=(x−y)^3+z^3+3x2y−3xy2+3xyz
=(x−y+z)(x^2−2xy+y^2−zx+yz+z^2)+3xy(x−y+z)
=(x−y+z)(x^2+y^2+z^2+xy+yz−zx)
=12.(x−y+z)[(x+y)^2+(y+z)^2+(z−x)^2]
Thay vào biểu thức ta có:
\(\frac{\frac{1}{2}\left(x-y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
=\(\frac{1}{2}\left(x+y+z\right)\)
1) tìm x, y, z: a) x/y+z = y/x+2 = z/x+y ai giải cho mình bài này mình tick cho người đó 10 tick
Sửa đề:
Lời giải:
\(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{x+y}=\dfrac{1}{x+y+z}\)(nghĩ vậy,vì đề bạn thiếu)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{x+y}=\dfrac{x+y+z}{y+z+x+z+x+y}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)Suy ra: \(\left\{{}\begin{matrix}\dfrac{x}{y+z}=\dfrac{1}{2}\\\dfrac{y}{x+z}=\dfrac{1}{2}\\\dfrac{z}{x+y}=\dfrac{1}{2}\\\dfrac{1}{x+y+z}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\\x+y+z=2\end{matrix}\right.\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow y+z=2-x\)
Nên \(2-x=2x\Leftrightarrow3x=2\Leftrightarrow x=\dfrac{2}{3}\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow x+z=2-y\)
Nên \(2-y=2y\Leftrightarrow3y=2\Leftrightarrow y=\dfrac{2}{3}\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow x+y=2-z\)
Nên \(2-z=2z\Leftrightarrow3z=2\Leftrightarrow z=\dfrac{2}{3}\)
Vậy \(x=y=z=\dfrac{2}{3}\)
tìm x,y,z biết :
a) 3x-1/5 = 2x-1/7 = 2y+5/x+1
b) 3x-4/6 = y-1/2 = 3x-y-3/2y
c) x/2 = y/3 = z/4 và 2x^2 + y^2 - 3z^2 =-124
cần giải gấp ai xong trước mình tick cho
1. Cho x,y,z>o và x+y+z=1. Tìm Min P=\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
2. Cho x,y,z >0 và x+y+z=3.Tìm Min P=\(\frac{x^2}{y+1}\)+\(\frac{y^2}{z+1}\)+\(\frac{z^2}{x+1}\)
Nhanh lên nha các bn. mik cần gấp lắm. Sẽ tick 10 tick cho bn trả lời nhanh nhất!!
Cảm ơn nhìu^^ ありがとう
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
2. áp dạng bất đẳng thức cauchy - schwarz dạng engel
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)
dấu bằng xay ra khi x=y=z=1
lm bất đẳng thức cô si nhé!!! Thanks