Bài 2
a, Tìm các số \(x;y;z\)biết \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)
b,Chứng minh rằng ; ko tìm đc các số tự nhiên \(x;y;z\) thỏa mãn:
\(|x-y|+|y-z|+|z-x|=2019\)
Cho số hữu tỉ: X=2/2a-1.Tìm số nguyên a để X là số nguyên :)các bạn giải bài này giúp mình với..mình đang ôn để thi học kì..cảm ơn các bạn nhiều lắm..
Bài 1: Tìm số nguyên a biết 6a + 1 chia hết 2a - 1
Bài 2: Đơn giản các biểu thức sau:
a, x - y - ( - y + a + x)
b, (-90) - (b + 10) + 100
Bài 1:
6a+1 \(⋮\)2a-1
=> 2a-1\(⋮\)2a-1
=> (6a+1)- 3(2a-1) \(⋮\)2a-1
=> (6a+1) - ( 6a-3) \(⋮\)2a-1
=> 6a+1 -6a+3\(⋮\)2a-1
=> 4 \(⋮\)2a-1
=> 2a-1\(\in\)Ư(4)
Còn j bn làm nốt nhoaaa
1. Ta có \(6a+1⋮2a-1\)
\(\Rightarrow3\left(2a-1\right)+4⋮a-1\)
\(\Rightarrow4⋮a-1\)
\(\Rightarrow a-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow a\in\left\{-3;-1;0;2;3;5\right\}\) ( thỏa mãn a nguyên )
Vậy \(a\in\left\{-3;-1;0;2;3;5\right\}\)
2. a, x - y - ( - y + a + x)
= x - y + y - a - x
= - a
b, (-90) - (b + 10) + 100
= - 90 - b - 10 + 100
= ( - 90 - 10 +100) - b
= 0 - b
= - b
@@ Học tốt
Bài 1 t sai r
Cậu tham khảo của bn kia nhá
2a - 1 \(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2a\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow a\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà a nguyên
\(\Rightarrow a\in\left\{0;1\right\}\)
Vậy \(a\in\left\{0;1\right\}\)
@@ Học tốt
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
Bài 1: Cho số hữa tỉ \(x=\frac{2a-3}{a-1}\)
Tìm các số nguyên a để x là số nguyên?
giúpp mk vs mk đg cần gấp ạ
\(x=\frac{2a-3}{a-1}=\frac{2\left(a-1\right)-1}{a-1}=2-\frac{1}{a-1}\)
Để x là số nguyên => \(\frac{1}{a-1}\)nguyên
=> \(1⋮a-1\)
=> \(a-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> \(a=\left\{2;0\right\}\)
\(x=\frac{2a-3}{a-1}=\frac{2a-1-2}{a-1}=\frac{-2}{a-1}\)
\(\Rightarrow a-1\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
a - 1 | 1 | -1 | 2 | -2 |
a | 2 | 0 | 3 | -1 |
Bài 2
a> Tìm các số x,y thỏa mãn: x−13=y+25=x+y+1x−2x−13=y+25=x+y+1x−2
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=2x+1x−32x+1x−3
c> Tìm số có 2 chữ số ¯¯¯¯¯abab¯ biết: (¯¯¯¯¯ab)2(ab¯)2=(a+b)3(a+b)3
¯¯¯¯¯ab
Bài 1.Tìm số nguyên tố a sao cho :
(2a^2+3a+19) là B(a+1)
bài 2.Tìm số nguyên tố a lớn hơn hoặc bằng 2 sao cho
(a-1) là Ư(3a^2a+15)
Bài 3. Tìm x thuộc N sao cho
2^x2+1x4^x=512
Bài 1: Cho \(\frac{2a+3b}{2c+3d}=\frac{5a+b}{5c+d}\) . Chứng minh rằng \(\left(\frac{2a+3c}{2b+3d}\right)^3=\frac{2a^3+3c^2}{2b^2+3d^2}\)
Bài 2:Tìm các số x,y biết \(\frac{x-3}{2y}=\frac{5y+6}{4}=\frac{3}{2y+2}\)
Các bạn giúp mình bài tìm x để này với :
2A+3=4x
bn phải cho A = ...................... chứ !
Bài 1: Tìm chữ số tận cùng của các các tổng sau:
a) A = 21 + 35 + 49 + 513 + .... + 20238085
b) B = 23 + 37 + 411 + ... + 20238087
Bài 2: Tìm số tự nhiên a, b biết:
a) 2a + 154 = 5b b) 10a + 168 = b2
Bài 3: Chứng minh rằng các tổng sau không thể là số chính phương (Gợi ý: để ý chữ số tận cùng)
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Bài 4: Chứng minh rằng:
a) 55 - 54 + 53 chia hết cho 7
b) 76 + 75 - 74 chia hết cho 11
c) 1 + 2 + 22 + 23 + ... + 2119 chia hết cho 7
d) 1 + 2 + 22 + 23 + ... + 2239 chia hết cho 105
e) 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi số nguyên dương n
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
Bài 4 :
a) \(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5-1\right)\)
\(=5^3.19\) không chia hết cho 7 (bạn xem lại đề)
b) \(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55=7^4.11.5⋮11\)
\(\Rightarrow dpcm\)
c) \(1+2+2^2+2^3+...+2^{119}\)
\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)
\(=7+2^3.7+...+2^{117}.7\)
\(=7.\left(1+2^3+...+2^{117}\right)⋮7\)
\(\Rightarrow dpcm\)
e) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
Ta thấy : \(3^n.10⋮10\)
Ta lại có : \(2^n\) có chữ số tận cùng là số chẵn
\(\Rightarrow2^n.5\) có chữ số tận cùng là số \(0\)
\(\Rightarrow2^n.5⋮10\)
Vậy \(3^n.10-2^n.5⋮10\left(dpcm\right)\)
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm