Cho đường tròn O, đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A qua D
a) ABE là tam giác gì ?
b) Gọi K là giao điểm của EB với đường tròn. CMR OD vuông góc với AK
cho đường tròn (O), đường kính AB, điểm D thuộc đường tròn. gọi E là điểm đối xứng của A qua D.
a) tam giác ABE là tam giác gì ?
b) gọi K là giao điểm của EB với (O). C/M OD vuông góc AK
a: Xét (O) có
ΔBDA nội tiép
BA là đường kính
=>ΔBDA vuông tại D
Xét ΔBEA có
BD vừa là đường cao, vừa là trung tuyến
nên ΔBAE cân tại B
b: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
Xét ΔAEBcó AO/AB=AD/AE
nên OD//EB
mà AK vuông góc với EB
nên AK vuông góc với OD
Cho (O), đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A qua D
a, Tam giác ABE là tam giác gì?
b, Gọi K là giao điểm của EB với (O). Chứng minh OD ⊥ AK
a, Chứng minh được ∆BAE cân tại B
b, Chứng minh được DO//BE (tính chất đường trung bình)
c, Mà AK ⊥ BE ( A K B ^ = 90 0 ) => AK ⊥ DO
Bài 5: Cho (O), đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A
qua D.
a) Tam giác ABE là tam giác gì?
b) Gọi K là giao điểm của EB với (O). Chứng minh OD 1 AK.
a: Xét ΔABE có
O là trung điểm của AB
D là trung điểm của AE
Do đó: OD là đường trung bình của ΔABE
Suy ra: OD//EB
=> AB=AE
hay ΔABE cân tại A
Bài 1: Cho (O) đường kính AB, điểm D thuộc đường tròn. Gọi E là điểm đối xứng với A qua D.
a) Tam giác ABE là tam giác gì ?
b) Gọi K là giao điểm của EB với (O). CMR: OD vuông góc với AK.
Bài 2: Cho 2 đưởng tròn (O) và (O'). Dây AC của (O) cắt (O') ở D, dây OE của (O') cắt (O) ở F. CM
a) OD vuông góc với BC
b) Điểm F cách đều 3 cạnh tam giác ABE
Cảm ơn đã giúp đỡ !!!!
Cho (O) đường kính AB, D thuộc đường trón. Gọi E là điểm đối xứng với A qua D.
a, Tam giác ABE là tam giác gì?
b, Gọi K là giao điểm của EB với (O). Chứng minh OD vuông góc AK
tìm nghiệm tự nhiên của phương trình 2^x+1=y^2
Cho (O) đường kính AB, D là một diểm thuộc đường tròn. E là một điểm đồi xứng A qua D
a) Gọi K là giao điểm Eb với (O). CMR OD _|_ AK
b) Tìm vị trí điểm D trên đường tròn để diện tích ABE lớn nhất
LA 1111777779990000AAAAADDDBBNNIY
Cho đường tròn (O) , đường kính AB , điểm M thuộc đường tròn . Vẽ điểm N đối xứng với A qua M . BN cắt đường tròn ở C . Gọi E là giao điể, của AC và BM
a) CMR : NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M . CMR : FA là tiếp tuyến (O)
c) CMR : FN là tiếp tuyến của đường tròn (B;BA)
d) CMR : BM.BF = BF2 - FN2
Vẽ hình giúp mình nha , cảm ơn mọi người
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xet ΔNAB có
AC.BM là các đường cao
AC cắt BM tại E
Do đó: E là trực tâm
=>NE vuông góc với AB
b: Xét tứ giác NEAF có
M là trung điểm chung của NA và EF
nên NEAF là hình bình hành
=>NE//AF
=>AF vuông góc với AB
=>FA là tiêp tuyến của (O)
Cho nửa đường tròn (O) đường kính BC. Điểm A thuộc cung BC (AB<AC). Gọi E là điểm đối xứng với B qua A. a) Tam giác BCE là tam giác gì? b) Gọi D là giao điểm của CE với nửa đường tròn. Kẻ tiếp tuyến Bx với nửa đường tròn (Bx và A cùng phía với BC). Chứng minh BA là tia phân giác của góc DBx c) CA cắt BD, Bx theo thứ tự ở I, K. Tứ giác BKEI là hình gì?
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD