Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Anh Thư
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Doraemon
Xem chi tiết
Phước Nguyễn
30 tháng 3 2016 lúc 18:42

Bài này ngó qua ngó lại thì không khó lắm. Tối giải nha. 

Crkm conan
Xem chi tiết
Phan Hải Đăng
Xem chi tiết
Nhật Hạ
28 tháng 3 2020 lúc 17:45

a, Ta có: BAE + DAE = BAD  => BAE + DAE = 90o   

và IAD + DAE = IAE  => IAD + DAE = 90o 

=> BAE = IAD

Xét △ABE vuông tại B và △ADI vuông tại D

Có: AB = AD (ABCD là hình vuông)

      BAE = DAI (cmt)

=> △ABE = △ADI (cgv-gnk)

=> AE = AI (2 cạnh tương ứng)

=> △AEI cân tại A

Mà IAE = 90o

=> △AEI vuông cân tại A

=> AEI = 45o

b, Xét △ABE có: AB2 + BE2 = AE2 (định lý Pytago)

Vì AB // CD (ABCD là hình vuông) => \(\frac{AE}{EF}=\frac{BE}{EC}\)(định lý Thales)  \(\Rightarrow\frac{AE}{AF}=\frac{BE}{BC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{BE}{AB}\) (BC = AB <= ABCD là hình vuông )\(\Rightarrow AF=\frac{AE.AB}{BE}\) 

Ta có: \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AE^2}+\frac{1}{\left(\frac{AE.AB}{BE}\right)^2}=\frac{1}{AE^2}+\frac{BE^2}{AE^2.AB^2}=\frac{AB^2}{AE^2.AB^2}+\frac{BE^2}{AE^2.AB^2}\)

\(=\frac{AB^2+BE^2}{AE^2.AB^2}=\frac{AE^2}{AE^2.AB^2}=\frac{1}{AB^2}\) (đpcm)

c, Xét △ABE vuông tại B có: AE > AB (quan hệ giữa cạnh huyền và cạnh góc vuông) => AE2 > AB \(\Rightarrow\frac{1}{2}.AE^2>\frac{1}{2}.AB^2\)

\(\Rightarrow\frac{1}{2}.AE.AI>\frac{1}{2}.a^2\)\(\Rightarrow S_{\text{△}AEI}>\frac{1}{2}a^2\)

Khách vãng lai đã xóa
Ngô Thanh Thúy
Xem chi tiết
Gallavich
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 16:56

a.

Xét hai tam giác vuông ABE và ADH:

\(AD=AB\)

\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))

\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)

\(\Rightarrow AH=AE\)

\(\Rightarrow\Delta AHE\) vuông cân tại A

b. Cũng từ (1) ta có \(BE=DH\)

Xét hai tam giác vuông ABE và FDA có:

\(\widehat{BAE}=\widehat{AFD}\) (so le trong)

\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)

\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)

c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)

\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)

\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)

\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)

Nguyễn Việt Lâm
27 tháng 3 2021 lúc 16:56

undefined

Nguyễn Thủy
Xem chi tiết
Bùi Danh Nghệ
13 tháng 1 2016 lúc 9:18

Ngồi tick kiếm "tiền"

Ngồi làm mất thời gian

AI thấy đúng thì tick nhé!!!

Kiên Đặng
Xem chi tiết