Cho các số a,b,x, y sao cho ab#0 và a khác -b thỏa mãn
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ; x2 +y2=1
Chứng minh : \(\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\frac{2}{\left(a+b\right)^{1001}}\)
Tính tổng các giá trị của tham số m sao cho đường thẳng y = x cắt đồ thị hàm số y = x - 5 x + m tại hai điểm A và B sao cho AB = 4 2
A. 2
B. 5
C. 7
D. 8
Phương trình hoành độ giao điểm
x x + m = x - 5 x ≠ - m ⇔ x 2 + m - 1 x + 5 = 0 = f x x ≠ - m
Đường thẳng cắt đồ thị tại 2 điểm A,B khi và chỉ khi
∆ 1 > 0 f - m ≠ 0 ⇔ m 2 - 2 m - 19 > 0 m ≠ - 5
Gọi A x 1 ; x 1 , B x 2 ; x 2 với x 1 ; x 2 là 2 nghiệm của phương trình f(x) = 0
A B = 4 2 ⇔ x 2 - x 1 = 4 ⇔ x 1 + x 2 2 - 4 x 1 x = 16 ⇔ m 2 - 2 m - 35 = 0 ⇔ m = 7 m = - 5
So với điều kiện ta nhận m = 7
Đáp án C
Tìm các giá trị thực của tham số m sao cho đường thẳng y = x cắt đồ thị hàm số y = x − 5 x + m tại hai điểm A và B sao cho A B = 4 2
A. 2
B. 8
C. 5
D. 7
Đáp án D
Phương trình hoành độ giao điểm x = x − 5 x + m ⇔ x + m ≠ 0 x 2 + m − 1 x + 5 = 0 1
Hai đồ thị có 2 giao điểm ⇔ 1 có 2 nghiệm phân biệt x ≠ − m
Suy ra Δ = m − 1 2 − 20 > 0 − m 2 − m m − 1 + 5 ≠ 0 ⇔ m > 2 5 + 1 m < 1 − 2 5 m ≠ − 5 *
Khi đó
x A + x B = 1 − m x A x B = 5 ⇒ A B = 2 x A − x B 2 = 2 x A + x B 2 − 8 x A x B = 2 1 − m 2 − 40 = 4 2
⇒ 2 1 − m 2 − 40 = 32 ⇒ m − 1 2 = 36 ⇔ m = 7 m = − 5
Kết hợp điều kiện * ⇒ m = 7
1.Trên tia Ox lấy điểm A, đ.iểm B sao cho OB=9cm,OA=3cm:
a) Tính AB?
b) Gọi M là trung điểm của AB, N là trung điểm của OB. Tính MN.
2. Tìm các số tự nhiên x,y sao cho : x+6=y(x-1)
trên tia Ox có OA<OB(3<9)nên A sẽ nằm giữa O và B =>OA+AB=OB
thay OA= 3 cm ;OB= 9 cm ,ta óc :
3+AB=9
AB=9-3=6(cm)
vì M là trung điểm của AB
=>AM=MB=AB/2=6/2=3(cm)
vì N là trung điểm của OB
=>ON=NB=OB/2=9/2=4,5(cm)
=>MB<NB(3<4,5)nên M sẽ nằm giữa N và B =>MN+MB=NB
thay MB=4,5 cm ;NB= 3 cm ,ta có :
3+MN=4,5
MN=4,5-3
MN=1,5(cm)
ai làm ơn tích mình ,mình tích lại cho
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
a) Tìm 2 số tự nhiên a và b biết rằng: BCNN(a, b) = 3 x UCLN(a, b) và ab = 1200.
b) Tìm các số tự nhiên x, y, z sao cho x5.3yz 7850.
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Câu 1: Kí hiệu S(n) là tổng các chữ số của 1 số tự nhiên. Tìm số tự nhiên n sao cho n + S(n) = 54.
Câu 2: Tìm các số tự nhiên a,b nguyên tố cùng nhau sao cho a+7b/a+5b=29/28
Câu 3: Tìm số có 2 chữ số ab biết ab bằng 6 lần tích các chữ số của nó
Câu 4: Số các cặp số tự nhiên (x;y) thỏa mãn (x-y)(x+y) = 2014
Bài 1 : tìm các cặp số nguyên x; y sao cho :
a) x . y = x+ y
b) x . y = x - y
c) x ( y + 2) + y = 1
bài 2 : có tồn tại các số nguyên a,b,c thỏa mãn tất cả các điều kiện sao không ?
ab + c = -625
abc + b =633
abc+c=5597
Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd.
+ Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6.
+ Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
...............HELP ME , PLEASE...........
Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd.
+ Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6.
+ Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
help me
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.