Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hatake Kakashi

Những câu hỏi liên quan
@Anh so sad
Xem chi tiết
bé thỏ cute
Xem chi tiết
bé thỏ cute
Xem chi tiết
Ngô Ngọc Tâm Anh
16 tháng 12 2021 lúc 13:08

Tự vẽ hình

Ta có:

AC=OA+OCAC=OA+OC

BD=OB+ODBD=OB+OD

mà AC=BDAC=BD (gt) , OA=OBOA=OB (gt)

⇒OC=OD⇒OC=OD

Xét △OAD△OAD và △OBC△OBC có

OA=OBOA=OB (gt)

ˆAOD=ˆBOCAOD^=BOC^ (đối đỉnh)

OD=OCOD=OC (cmt)

⇒△OAD=△OBC⇒△OAD=△OBC (c.g.c)

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

b)

Do △OAD=△OBC△OAD=△OBC (cmt)

⇒ˆODA=ˆOCB⇒ODA^=OCB^ (hai góc tương ứng)

và ˆOAD=ˆOBCOAD^=OBC^ (hai góc tương ứng)

Ta có:

ˆOAD+ˆCAE=1800OAD^+CAE^=1800

ˆOBC+ˆDBE=1800OBC^+DBE^=1800

mà ˆOAD=ˆOBCOAD^=OBC^ (cmt)

⇒ˆCAE=ˆDBE⇒CAE^=DBE^

Xét △EAC△EAC và △EBD△EBD có
ˆCAE=ˆDBECAE^=DBE^ (cmt)

AC=BDAC=BD (gt)

ˆACE=ˆEDBACE^=EDB^ (do ˆOCB=ˆODAOCB^=ODA^ -cmt)

⇒△EAC=△EBD⇒△EAC=△EBD (g.c.g)

c)

Xét △AOB△AOB có OA=OBOA=OB (gt)

⇒△AOB⇒△AOB cân tại OO

⇒ˆOBA=ˆOAB⇒OBA^=OAB^

Xét △COD△COD có OC=ODOC=OD (cmt)

⇒△COD⇒△COD cân tại OO

⇒ˆOCD=ˆODC⇒OCD^=ODC^

Ta có:

ˆAOB+ˆOBA+ˆOAB=1800AOB^+OBA^+OAB^=1800

ˆCOD+ˆOCD+ˆODC=1800COD^+OCD^+ODC^=1800

mà ˆOBA=ˆOABOBA^=OAB^(cmt), ˆOCD=ˆODCOCD^=ODC^ (cmt)

⇒ˆAOB+2ˆOBA=1800⇒AOB^+2OBA^=1800

ˆCOD+2ˆODC=1800COD^+2ODC^=1800

mà ˆAOB=ˆCODAOB^=COD^ (đối đỉnh)

⇒ˆOBA=ˆODC⇒OBA^=ODC^

mà chúng ở vị trí so le trong

⇒AB//CD

Huyền ume môn Anh
Xem chi tiết
ducvong
31 tháng 12 2021 lúc 18:54

undefined

Đỗ Đức Minh
Xem chi tiết
Châu Anh Hà Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 10:55

a: Xét ΔOAC và ΔOBD có 

OA=OB

\(\widehat{O}\) chung

OC=OD

Do đó: ΔOAC=ΔOBD

Suy ra: AC=BD

b: Xét ΔNBC và ΔNAD có 

\(\widehat{NCB}=\widehat{NDA}\)

NB=NA

\(\widehat{CBN}=\widehat{DAN}\)

Do đó: ΔNBC=ΔNAD

Suy ra: NC=ND

Xét ΔOND và ΔONC có 

ON chung

ND=NC

OD=OC

Do đó: ΔOND=ΔONC

Suy ra: \(\widehat{DON}=\widehat{CON}\)

hay ON là tia phân giác của góc xOy

toán học
Xem chi tiết
Tuệ Nhiên Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 22:15

a: Xét ΔOAD và ΔOBC có

OA=OB

góc O chung

OD=OC

Do đó: ΔOAD=ΔOBC

=>AD=BC

b: Xét ΔEAC và ΔEBD có

góc EAC=góc EBD

AC=BD

góc ECA=góc EDB

Do đó: ΔEAC=ΔEBD

Bùi Kim Ngân
Xem chi tiết
Trang Phạm
Xem chi tiết