Cho tam giác ABC. Các điểm D,E,F theo thứ tự là trung điểm của BC, AC, AB. Các điểm A’ , B’, C’ là trung điểm của EF, DF, DE. CMR: Tam giác A’B’C’ đồng dạng với tam giác ABC
Mong mọi người giúp đỡ
cho tam giác ABC. Các điểm D,E,F theo thứ tự là trung điểm của BC, Ca,AB. Các điểm A',B',C' theo thứ tự là trung điểm của EF, DF, DE. Chứng minh rằng tam giác A'B'C' đồng dạng tam giác ABC.
Mọi người giúp mình với ạ^^
Cho tam giác ABC, điểm O nằm trong tam giác. Gọi D, E, F theo thứ tự là trung điểm của BC,
CA, AB. Gọi A’, B’, C’ lần lượt là điểm đối xứng của điểm O qua D, E, F.
Chứng minh rằng các tam giác DEF, ABC, A’B’C’ đồng dạng với nhau.
Cho tam giác ABC. Các điểm D, E, F theo thứ tự làm trung điểm của BC, CA, AB. Các điểm A’, B’, C’ theo thứ tự là trung điểm của EF, DF, DE. Chọn câu đúng?
A. ΔA’B’C’ đồng dạng ΔABC theo tỉ số k = 1 2
B. ΔEDF đồng dạng ΔABC theo tỉ số k = 1 2
C. ΔA’B’C’ đồng dạng ΔABC theo tỉ số k = 1 4
D. ΔA’B’C’ đồng dạng ΔEDF theo tỉ số k = 1 2
Vì D, E, F theo thứ tự làm trung điểm của BC, CA, AB nên EF, ED, FD là các đường trung bình của tam giác ABC nên E F B C = F D A C = E D A B = 1 2 suy ra ΔABC ~ ΔDEF (c - c - c) theo tỉ số đồng dạng k = 2.
Tương tự ta có A’B’, B’C’, C’A’ là các đường trung bình của tam giác DEF nên ΔA’B’C’ đồng dạng ΔDEF theo tỉ số k = 1 2
Theo tính chất đường trung bình B ' C E F = 1 2 mà E F B C = 1 2 (cmt) suy ra B ' C ' B C = 1 4
Tương tự A ' B ' A B = A ' C ' A C = 1 4
Do đó ΔA’B’C’ đồng dạng ΔABC theo tỉ số k = 1 4
Đáp án: C
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Cho tam giác ABC, đây là trung điểm của AB,E là trung điểm của AC. Vẽ điểm F sao cho E là trung điểm của DF. Chứng minh rằng
a) tam giác BDC = tam giác FCD
b)DE song song với BC và DE = 1\2 BC
( ghi cả giả thuyết và kết luận)
Mong mọi người giúp
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD=CF và BD//CF
Xét ΔBDC và ΔFCD có
\(\widehat{BDC}=\widehat{FCD}\)
DC chung
\(\widehat{BCD}=\widehat{FDC}\)
Do đó:ΔBDC=ΔFCD
b: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và DE=1/2BC
Cho tam giác cân ABC (AB=AC). Gọi D là trung điểm của BC, từ D hạ DE, DF vuông góc với AB, AC theo thứ tự (E thuộc AB, F thuộc AC). a) Cm: tam giác AED=AFD và AD là trung trực của EF. b) Trên tia đối của tia DE lấy điểm K sao cho DK=DE. Cm: Tam giác EKC vuông. c) So sánh BF và EK.
a)Ta có : AB = AC
=> △ ABC cân tại A
Xét △ ABC cân tại A có :
AD là đường trung tuyến
=> AD là đường phân giác
Xét △ ADE vuông tại E và △ ADF vuông tại F có :
AD là cạnh chung
DAEˆ=DAFˆDAE^=DAF^ ( AD là đường phân giác )
Vậy △ ADE = △ ADF (ch-gn)
=> AE = AF ( hai cạnh tương ứng )
=> A nằm trên đường trung trực của EF (1)
Lại có : DE = DF ( △ ADE = △ ADF )
=> D nằm trên đường trung trực của EF (2)
Từ (1), (2) => AD là đường trung trực của EF
Mấy câu sau bạn tự làm nhé
Cho tam giác nhọn ABC, AD là đường cao. Vẽ các điểm M, N sao cho AB là trung trực của DM, AC là trung trực của DN. Gọi E, F lần lượt là giao điểm của MN với AC, AB. CMR: a) Tam giác AMN cân b) DE+EF+DF=MN c) DA là phân giác góc EDF d) Giao điểm các đường phân giác của tam giác DEF và trực tâm tam giác ABC trùng nhau
tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))
CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI
Cho tam giác ABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Trên tia DE lấy điểm F sao cho DE = EF. Chứng minh:
a) △EAD = △EDF
b) DE // BC
( Mọi người vẽ hình và giải giúp minh nha) Thanks mọi người
Cho tam giác ABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Trên tia DE lấy điểm F sao cho DE = EF. Chứng minh:
a) △EAD = △EDF
b) DE // BC
( Mọi người vẽ hình và giải giúp minh nha) Thanks mọi người