Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
dang xuan nhien
Xem chi tiết
Đinh Đức Hùng
7 tháng 6 2017 lúc 10:24

\(n^4+7\left(7+2n^2\right)\)

\(=n^4+14n^2+49\)

\(=\left(n^2\right)^2+2.7.n^2+7^2\)

\(=\left(n^2+7\right)^2\)

Vì n là số nguyên nẻ nên n có dạng 2k + 1 với k là số nguyên

\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)

\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)

\(=\left[4k\left(k+1\right)+8\right]^2\)

Ta thấy \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)

\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮64\forall k\in Z\)

Hay \(n^4+7\left(7+2n^2\right)⋮64\forall n\)là số nguyên lae (đpcm)

Miamoto Shizuka
Xem chi tiết
Nguyễn Văn Ngu
Xem chi tiết
Phạm Thái Bình
3 tháng 2 2022 lúc 6:46

n4 + 7( 7 + 2n2 )

= n4 + 14n2 + 49

= ( n2 + 7 )2

Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )

Thế vô ta được :

[ ( 2k + 1 )2 + 7 ]2

= ( 4k2 + 4k + 1 + 7 )2

= ( 4k2 + 4k + 8 )2

= [ 4( k2 + k + 2 ) ]2

= { 4[ k( k + 1 ) + 2 ] }2

Ta có : k( k + 1 ) chia hết cho 2

            2 chia hết cho 2

=> k( k + 1 ) + 2 chia hết cho 2

=> 4[ k( k + 1 ) + 2 ] chia hết cho 8

=>  { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64

=> đpcm

Khách vãng lai đã xóa
phan gia huy
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lê Song Phương
2 tháng 8 2023 lúc 19:44

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

Xyz OLM
3 tháng 8 2023 lúc 15:59

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

Độc Cô Dạ
Xem chi tiết
Girl
8 tháng 3 2019 lúc 21:35

\(\frac{2012}{x^2+y^2-20\left(x+y\right)+2213}=\frac{2012}{\left(x^2-20x+100\right)+\left(y^2-20y+100\right)+2013}\)

\(=\frac{2012}{\left(x-10\right)^2+\left(y-10\right)^2+2013}\le\frac{2012}{2013}\)

\("="\Leftrightarrow x=y=10\)

Bùi Mạnh Toàn Thắng
Xem chi tiết
TRần Minh THắng
Xem chi tiết