Cho a,b,c thỏa mãn a+b+c=0
CMR: ab+2bc+3ca\(\le\)0
cho a; ; b; c thỏa mãn a+ b + c = 0 . Chứng minh rằng : ab + 2bc + 3ca < 0
Cho a, b, c thỏa mãn a + b + c = 0. Chứng Minh rằng : ab + 2bc + 3ca < hoặc= 0
vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0
cho A,B,C thỏa mãn a+b+c=0
cmr ab+2bc+3ca bé hơn hoạc bằng 0
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0
với a,b,c là các số thực thỏa mãn a^3+b^3+c^3=4abc và ab+2bc+3ca=0, chứng minh rằng a=b=c=0
bài 1: cho a,b,c thỏa mãn a+b+c=0
tính: (a+2b)2+(b+2c)2+(c+2a)2 / (a-2b)2+(b-2c)2+(c-2a)2
bài 2: cho số a,b,c có tổng khác 0 thỏa mãn: a3+b3+c3=3abc
tính: ab+2bc+3ca / 3a2+4b2+5c2
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)
Cho các số a,b,c thỏa mãn a+b+c=1. Hãy tìm GTLN của biểu thức N= ab+2bc+3ca
Cho a,b,c là các số dương thỏa mãn a+b+c=1
Tìm GTNN của A=ab+2bc+3ca
Cho các số a,b,c thỏa mãn a+b+c=1. Hãy tìm gia trị lớn nhất của biểu thức \(C=ab+2bc+3ca\)
\(C=ab+2bc+3ca=ab+ca+2bc+2ca\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=a\left(1-a\right)+2c\left(1-c\right)=-a^2+a-2c^2+2c\)
\(=-\left(a-\frac{1}{2}\right)^2-2\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}.\)
Vậy GTLN của C = \(\frac{3}{4}\)khi \(a=\frac{1}{2};c=\frac{1}{2};b=0.\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>C=ab+2bc+3ca=ab+ca+2bc+2ca
=a(b+c)+2c(a+b)
=a(1−a)+2c(1−c)=−a2+a−2c2+2c
=−(a−12 )2−2(c−12 )2+34 ≤34 .
Vậy GTLN của C = 34 khi a=12 ;c=12 ;b=0.
Cho a+b+c=0
Chứng minh rằng: \(\)ab+ 2bc+ 3ca \(\le\)0
\(ab+2bc+3ac\)
\(=ab+2bc+ac+2ac\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=-a^2-2b^2\le0\) (đúng)
Dấu "=" khi \(x=y=z=0\)
Ta có:
a+b+c=0
=> a + b = -c
=> (a+b)2 = c2
=> a2 + 2ab + b2 = c2
=> ab = \(\dfrac{c^2-a^2-b^2}{2}\) (1)
Tương tự ta có: a2 + 2ac + c2 = b2
b2 + 2bc + c2 = a2
=> ac = \(\dfrac{b^2-a^2-c^2}{2}\) => 3ac = \(\dfrac{3b^2-3a^2-3c^2}{2}\) (2)
bc = \(\dfrac{a^2-b^2-c^2}{2}\) => 2bc = a2 - b2 - c2 (3)
Thay (1), (2), (3) vào bdt cần ch/m, ta có:
ab + 2bc + 3ac ≤ 0
<=> \(\dfrac{c^2-a^2-b^2}{2}\) + a2 - b2 - c2 + \(\dfrac{3b^2-3a^2-3c^2}{2}\)
<=> c2 - a2 - b2 + 2a2 - 2b2 - 2c2 + 3b2 - 3a2 - 3c2 ≤ 0
<=> -2a2 -4c2 ≤ 0
<=> -2(a2 + 2c2) ≤ 0 (Bdt đúng với mọi a, c)
Dau "=" xay ra khi a2 + 2c2 = 0
<=> a = c = b = 0.