phan tich thanh nhan tu x+canx-12
phan tich thanh nhan tu x+canx-12
\(x+\sqrt{x}-12=\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
Phan tich da da thuc thanh nhan phan tu
(x^2+x+1)(x^2+x+2)-12
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
(x^2+x)^2+4x^2+4x-12 phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
phan tich da thuc thanh nhan tu
a) m^2 -7m +12
b) 2x^4 -x^3 -54x +27
A, m2-7m+12=m2-3m+12-4m=m(m-3)-4(m-3)=(m-4)(m-3)
B, 2x4-x3+27-54x=x3(2-x)-27(2-x)=(x3-27)(2-x)=(x-3)(x2+3x+9)(2-x)
a) m^2 -7m +12 = m^2 -3m -4m +12
=m(m -3)-4 (m- 3)
=(m-4)(m-3)
b) 2x^4-x^3 -54x+ 27
=(2m^4-x^3)- (54x - 27)
=x^3(2x-1)-27(2x-1)
=(x^3-27)(2x-1)
phan tich da thuc thanh nhan tu
a, x^5+x-1
b, (x^2+3x+2)(x62+7x+12)-24
b ( x^2 + 3x + 2)( x^2 + 7x + 12) - 24
= [ x^2 +x + 2x + 2) ( x^2 +3x + 4x + 12) - 24
= [x(x+1) + 2 (x + 1) [x(x+3) + 4(x+3) ] - 24
= ( x + 1)(x+2) (x+3)(x+4) - 24
= ( x + 1).(x+4) (x+2)(x+3) - 24
=(x^2 + 5x + 4)(x^2+5x+6) - 24
Đặt x^2 + 5x +4 =y ta có:
= y(y+2) - 24
= y^2 + 2y - 24
= y^2 + 2y + 1 - 25
= ( y + 1)^2 - (5)^2
= ( y + 1 - 5 )( y + 1 + 5)
= ( y- 4)(y +6)
Thay y trở lại là đc
đúng nha
1 . Phan tich da thuc thanh nhan tu :
x^2 + 6x - 9 -y^2
2. Tim x :
x^2 -x - 12 = 0
Bài 1:
\(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
Bài 2:
\(x^2-x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12=0\)
\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
1. x2+6x-9-y2
=-(x2-6x+y2)-32
=-(x-y)2-32
=(-x+y-3)(-x+y+3)
2. x2 - x - 12 = 0
=> x2 - 4x + 3x - 12 = 0
=> x( x - 4 ) + 3( x - 4 ) = 0
=> ( x + 3 )(x - 4 ) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0 \end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
Vậy x=-3; x=4
phan tich tu va mau thanh nhan tu roi rut gon
a, 3x^2-12x+12/x^4-8x
b,7x^2+14x+7/3x^2+3x
Câu a :
\(\dfrac{3x^2-12x+12}{x^4-8x}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
Câu b :
\(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
phan tich da thuc thanh nhan tu x^3 - 64
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Ta có:\(x^3-64\)
\(=x^3-4^3\)
Áp dụng hằng đẳng thức:\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow x^3-4^3=\left(x-4\right)\left(x^2+4x+4^2\right)\)