Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ho Huu Huy
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Đỗ’s Dũng’s
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:30

a) Xét tứ giác AEHF có 

\(\widehat{HFA}\) và \(\widehat{HEA}\) là hai góc đối

\(\widehat{HFA}+\widehat{HEA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ngat Nguyen
30 tháng 7 2021 lúc 11:51

Ngat Nguyen
30 tháng 7 2021 lúc 11:54

undefined

Dung Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2022 lúc 14:16

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

quockhanh1979
Xem chi tiết
quockhanh1979
Xem chi tiết
phạm ngọc nhi
Xem chi tiết
Trương Nhật Hạ
Xem chi tiết
đặng văn nghĩa
9 tháng 10 2023 lúc 15:32

hello

NGUYỄN HẰNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:23

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

HC//BD

Do đó: BHCD là hình bình hành

b) Ta có: BHCD là hình bình hành(cmt)

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

Ta có: ΔFBC vuông tại F(gt)

mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(FM=\dfrac{BC}{2}\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(EM=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra MF=ME

hay ΔEMF cân tại M(đpcm)