giúp mk nha!!!!! cảm ơn nhiều(-_-)
Chứng minh rằng: nếu 1/a +1/b + 1/c >= a+b+c thì ta có bất đẳng thức a + b + c >= 3abc
giúp mk nha!!! cảm ơn mọi người(-_-)
Chưng minh rằng, nếu a, b, c là các số dương thỏa mãn:
1/a + 1/b + 1/c >= a+b+c thì ta có bất đẳng thức a + b + c >= 3abc.
giúp mk nha.
Chứng minh rằng:
Nếu a,b,c là các số nguyên thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)thì ta có bất đẳng thức \(a+b+c\ge3abc\)
Chứng minh các đẳng thức sau: (nhớ dùng các hằng đẳng thức 1,2,3,4 hoặc 5 nha)
1) a^3+b^3+c^3-abc= (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
2) a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc= (a+b).(b+c).(c+a)
3) Cho a+b+c=0. Chứng minh: a^3+b^3+c^3=3abc
Các bạn giải rõ cho mình tí, đừng làm tắt nhiều quá, cảm ơn. Ai nhanh tớ tích cho nha, làm từng câu cũng đc.
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Vì a+b+c=0
=> a+b=-c
=> (a+b)3= (-c)3
=> a3+b3+3ab(a+b) = (-c)3
=> a3+b3+c3= 3abc
Giúp mình câu này với(về hằng đẳng thức)
Chứng minh rằng
a) Nếu a^2+b^2=ab thì a=b
b) Nếu a^2+b^2+c^2=ab+bc+ca thì a=b=c
Giải hộ mình nhé cảm ơn nhiều
b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca
=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)
<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca
<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0
<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0
<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))
<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a
<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c
=>a=b=c (đpcm)
a) Theo đề bài: \(a^2+b^2=ab\)
=>\(a^2+b^2-ab=0\)
=>\(a^2-2ab+b^2+ab=0\)
=>\(\left(a-b\right)^2+ab=0\)
Vì \(\left(a-b\right)^2\ge0\) để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)
(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)
b)\(a^2+b^2+c^2=ab+bc+ca\)
=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)
<=>a-b=b-c=a-c=0
<=>a=b=c (đpcm)
Chứng minh rằng: Nếu a, b, c là các số dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
Thì ta có bất đẳng thức:
\(a+b+c\ge3abc\)
CHi tiết giùm mk nha cảm ơn
Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c=2b thì ta luôn có:
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Ta có: \(\left(\sqrt{a}+\sqrt{c}\right)^2=a+2\sqrt{ac}+c=2b+2\sqrt{ac}\)(1)
Lại có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\)
\(=\frac{\left(2\sqrt{b}+\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(Nhân cả tử & mẫu với \(\sqrt{a}+\sqrt{c}\))
\(=\frac{2\sqrt{ab}+2\sqrt{bc}+\left(\sqrt{a}+\sqrt{c}\right)^2}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(2)
Thế (1) và (2) => \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}\)\(=\frac{2\sqrt{ab}+2\sqrt{bc}+2b+\sqrt{ca}}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\frac{2}{\sqrt{a}+\sqrt{c}}.\)
\(\Rightarrow\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)(đpcm).
kurokawa neko sau khi thay 1 vào 2 là 2\(\sqrt{ac}\)nha
1) BIẾT a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một .Chứng minh ƯCLN( abc ; ab+bc+ca ) = 1
2) chứng minh rằng nếu a,b,c thỏa mãn bất đẳng thức \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}...\)thì /a/ = /b/ = /c/
dấu / / là giá trị tuyệt đối nha mk cần gấp các bạn cố giúp mk
Chứng minh rằng nếu A, B, C, a, b, c là các góc và cạnh của tam giác ABC thỏa mãn đẳng thúc sau thì là 1 tam giác cân
a+b=tan(A/2).(a.tanA + b.tanB )
Mình cảm ơn nhiều.
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.