Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nguyễn
Xem chi tiết
dao van bach
Xem chi tiết
Lê Thảo
Xem chi tiết
subjects
Hôm kia lúc 17:38

a. △ABC cân tại A, lại có AH là đường cao

=> AH cũng là đường trung tuyến, đường phân giác

=> HB = HC và \(\widehat{BAH}=\widehat{CAH}\)

b. ta có: \(HB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

áp dụng định lý pythagore vào △BAH vuông tại H ta có:

\(AH=\sqrt{AB^2-BH^2}=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)

c. xét △ vuông HMB và △ vuông HNC có

HB = HC (gt); \(\widehat{ABC}=\widehat{ACB}\)  (△ABC cân tại A)

=> △HMB = △HNC (ch-gn)

=> HM = HN (2 cạnnh tương ứng)

=> △MHN là △ cân (tại H)

Lương Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:44

a) Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

chôuu daq thấy mình cuti...
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2023 lúc 21:54

a: Xét ΔABC và ΔCBD có

AB/CB=BC/BD

góc B chung

=>ΔABC đồg dạng với ΔCBD

b: ΔABC đồng dạng với ΔCBD

=>AC/CD=BC/BD=6/9=2/3

=>7/CD=2/3

=>CD=7:2/3=7*3/2=21/2(cm)

c: CF/FD=BC/BD

EA/CE=BA/BC

mà BC/BD=BA/BC

nên CF/FD=EA/CE
=>CF*CE=FD*EA

Nguyễn Hữu Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 20:53

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 20:55

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

Bé Táo
Xem chi tiết
Katie Bell
9 tháng 5 2021 lúc 20:50

a) Chứng minh HB=HC:                                                                              Xét ΔAHB và ΔAHC có:                                                                         ∠AHB=∠AHC=90(độ)                                                                                   AH cạnh chung                                                                                             AB=AC(gt)                                                                                                     ⇒ ΔAHB = ΔAHC (ch-cgv)  ⇒ HB=HC (2 cạnh tương ứng)

b) Ta có: HB=HC=BC/2=6/2=3(cm)                                                              Ta có: ΔAHB vuông tại H.                                                                              ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2)          =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm) 

c)                                                                                                                  Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH                                                      Xét ΔAHD và ΔAHE có:                                                                              ∠D=∠E=90(độ)                                                                                          AH cạnh chung                                                                                             ∠BAH=∠CAH (gt)                                                                                        ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H. A B C H D E

                                                                                                  

Sani__chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 8:21

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

Minh Ngọc Aurora
Xem chi tiết