Tìm \(n\inℤ\), biết :
a, \(\left(n+5\right)^2-3\left(n+5\right)+2\)là bội của n + 5
b, \(\left(n+7\right)⋮n\)
c, \(\left(n+3\right)⋮n-2\)
Tìm \(n\inℤ\)biết :
\(\left(n+5\right)^2-3\left(n+5\right)+2\)là bội của n + 5
AI nhank mk tick
Ta có: (n + 5)2 - 3(n + 5) + 2 \(\in\)B(n + 5)
<=> (n + 5)(n + 5 - 3) + 2 \(⋮\)n + 5
<=> 2 \(⋮\)n + 5
<=> n + 5 \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
n + 5 | 1 | -1 | 2 | -2 |
n | -4 | -6 | -3 | -7 |
Vậy ...
Tìm n \(\in\)Z , biết :
a, \(\left(n+5\right)^2-3\left(n+5\right)+2\)là bội của n + 5
b, \(\left(n+7\right)⋮n\)
c, \(\left(n+3\right)⋮n-2\)
a, (n + 5)2 - 3(n + 5) + 2 ⋮ n + 5
=> (n+5)(n+5-3) + 2 ⋮ n + 5
=> 2 ⋮ n + 5
=> n + 5 thuộc Ư(2) = {-1; 1; -2; 2}
=> n thuộc {-6; -4; -7; -3}
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
Bài 1 : Chứng minh rằng với mọi số nguyên n
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6
c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12
Bài 2:
Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)
Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)
Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)
+) a = 0 suy ra \(x=-\frac{3}{4}\)
+) b = 0 suy ra \(x=\frac{5}{7}\)
+) c = 0 suy ra \(x=\frac{8}{3}\)
Vậy...
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
f) ( n + 6 )2 - ( n - 6 )2
= ( n + 6 + n - 6 ) ( n + 6 - n + 6 )
= 2n . 12
= 24n chia hết cho 24 ( đpcm )
Bài 1: Tính hợp lí ( nếu có thể )
a) \(1+3+5+...+2011+2013\)
b)\(1998.1998-2000.1996\)
Bài 3: Tìm \(n\in Z\)
a)\(\left(n+5\right)^2-3.\left(n+5\right)+2\)là bội của \(n+5\)
b)\(\left(n+7\right)⋮n\)
c)\(\left(n+3\right)⋮n-2\)
Bài 1:
a) 1014049
b)1998^2 - (1998+2)(1998-2) = 1998^2 - (1998^2 - 4)
= 1998^2 - 1998^2 +4
= 4
Bài 2:
a) n thuộc -7;-6;-4;-3
b) n thuộc -7;-1;1;7
c) n thuộc -3;1;3;7
XIN LỖI VÌ MÌNH KHÔNG GHI CÁCH GIẢI
CHÚC BẠN HỌC TỐT
Tìm các số nguyên n thỏa mãn :
a)\(\left(n+5\right)⋮\left(n-2\right)\)
b)\(\left(2n+1\right)⋮\left(n-5\right)\)
c) \(\left(n^2+3n-13\right)⋮n+3\)
d)\(\left(n^2+3\right)⋮\left(n-1\right)\)
Bài 1: Cho a,b,c∈Z,\(a^2+b^2+c^2⋮9\). CMR: abc⋮3
Bài 2: Cho a,b,c,d bất kì nguyên. CMR:\(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)⋮12\)
Bài 3: Tìm \(n\in N\)*:\(n.2^n+3^n⋮5\)
1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó
2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3.
Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)
Ta có 2 TH sau:
- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)
\(\Rightarrow\) Tích đã cho chia hết 12
- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)
3. Với \(n=1\) thỏa mãn
Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)
\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)
Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)
Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)
TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)
\(\Rightarrow n=10m+4\)
TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)
Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5
1
a,Lim\(\sqrt{1+2n-n^3}\)
b,Lim\(\sqrt{n^2+2n+3}-\sqrt[3]{n^2+n^3}\)
c,Lim\(\dfrac{\left(2\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n+1\right)\left(n+2\right)}\)
d,\(\dfrac{4^{n+1}-3\times2^n}{3^{n+2}+2^n}\)
e,\(\dfrac{7^{n+1}-5^{n+2}+3}{2\times6^{n+1}-3^n+3}\)
f,\(\dfrac{\sqrt{n^4+1}}{n}\) -\(\dfrac{\sqrt{4n^6+1}}{n}\)
\(a=\lim\sqrt{n^3}\sqrt{\dfrac{1}{n^3}+\dfrac{2}{n^2}-1}=\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n^2+2n+3}-n+n-\sqrt[3]{n^2+n^3}\right)\)
\(=\lim\dfrac{2n+3}{\sqrt{n^2+2n+3}+n}+\lim\dfrac{-n^2}{n^2+n\sqrt[3]{n^2+n^3}+\sqrt[3]{\left(n^2+n^3\right)^2}}\)
\(=\lim\dfrac{2+\dfrac{3}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{3}{n^2}}+1}+\lim\dfrac{-1}{1+\sqrt[3]{\dfrac{1}{n}+1}+\sqrt[3]{\left(\dfrac{1}{n}+1\right)^2}}=\dfrac{2}{2}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(c=\lim\dfrac{\left(\dfrac{2}{\sqrt{n}}+\dfrac{1}{n}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{3}{n}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{0.0}{1.1}=0\)
\(d=\lim\dfrac{4-3\left(\dfrac{2}{4}\right)^n}{9.\left(\dfrac{3}{4}\right)^n+\left(\dfrac{2}{4}\right)^n}=\dfrac{4}{0}=+\infty\)
\(e=\lim\dfrac{7-25\left(\dfrac{5}{7}\right)^n+3.\left(\dfrac{1}{7}\right)^n}{12.\left(\dfrac{6}{7}\right)^n-\left(\dfrac{3}{7}\right)^n+3\left(\dfrac{1}{7}\right)^n}=\dfrac{7}{0}=+\infty\)
\(f=\lim\dfrac{n^4-4n^6}{n\left(\sqrt{n^4+1}+\sqrt{4n^6+1}\right)}=\lim\dfrac{\dfrac{1}{n^2}-6}{\sqrt{\dfrac{1}{n^6}+\dfrac{1}{n^{10}}}+\sqrt{\dfrac{4}{n^4}+\dfrac{1}{n^{10}}}}=\dfrac{-6}{0}=-\infty\)