Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

ĐINH NHẬT BẢO NHI
Xem chi tiết
Đình Hưng Mai
Xem chi tiết
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Đinh Anh Thư
Xem chi tiết
Nguyễn Thị Hoài Thu
Xem chi tiết
magic school
28 tháng 9 2016 lúc 19:12

gtnn nghia la gi

Nguyễn Thị Hoài Thu
28 tháng 9 2016 lúc 19:21

GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé

Trọng Lễ
Xem chi tiết
Nguyễn Hồ Bảo Trâm
Xem chi tiết
Nguyễn Hồ Bảo Trâm
25 tháng 8 2020 lúc 13:20

help me, please

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:39

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:43

2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của bt trên = - 10 <=> x = - 1

b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của bt trên = 17 <=> x = - 4

Khách vãng lai đã xóa
VŨ THỊ LAN
Xem chi tiết
VŨ THỊ LAN
16 tháng 9 2017 lúc 18:06

giúp mk vs nha , mk đăng cần rất gấp

Thiên Thần Công Chúa
16 tháng 9 2017 lúc 18:21

mình hk bít vít

Ben 10
16 tháng 9 2017 lúc 19:47

a) A = (2x + 1)/(x² + 2) 
Tìm min 
ta có: A = (2x + 1)/(x² + 2) 
=> 2A = (4x + 2)/(x² + 2) 
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2) 
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2) 
= [ (x + 2)² - (x² + 2) ]/(x² + 2) 
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2) 
= (x + 2)²/(x² + 2) - 1 
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0 
=> (x + 2)²/(x² + 2) ≥ 0 
=> (x + 2)²/(x² + 2) - 1 ≥ -1 
=> 2A ≥ -1 
=> A ≥ -1/2 
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0 
<=> (x + 2)² = 0 
<=> x + 2 = 0 
<=> x = -2 

Tìm max: A = (2x + 1)/(x² + 2) 
= (2x + 2 - 1 + x² - x²)/(x² + 2) 
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2) 
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2) 
= [ (x² + 2) - (x - 1)² ]/(x² + 2) 
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2) 
= 1 - (x - 1)²/(x² + 2) 
Do (x - 1)² ≥ 0 và (x² + 2) > 0 
=> (x - 1)²/(x² + 2) ≥ 0 
=> -(x - 1)²/(x² + 2) ≤ 0 
=> 1 - (x - 1)²/(x² + 2) ≤ 1 
=> A ≤ 1. 
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0 
<=> -(x - 1)² = 0 
<=> (x - 1)² = 0 
<=> x - 1 = 0 
<=> x = 1. 

b) Tìm min: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1) 
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1) 
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1) 
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - 1 
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0 
=> (2x + 2)²/(4x² + 1) ≥ 0 
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1 
=> B ≥ -1 
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0 
<=> (2x + 2)² = 0 
<=> 2x + 2 = 0 
<=> 2x = -2 
<=> x = -1. 

Tìm max: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1) 
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1) 
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1) 
= 4 - (4x - 1)²/(4x² + 1) 
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4 

c) tìm min: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1) 
= [ (x² + 1) + (x + 1)² ]/(x² + 1) 
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1) 
Lập luận tương tự để tìm ra min C = 1 <=> x = -1 

tìm max: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= (3x² - x² + 2x + 3 - 1)/(x² + 1) 
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1) 
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1) 
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1