Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Huy
Xem chi tiết
Incursion_03
6 tháng 2 2019 lúc 10:48

Đề là tìm GTLN chứ nhỉ ?

Ta có : \(5x^2+8xy+5y^2=36\)

    \(\Leftrightarrow x^2+y^2+4\left(x^2+2xy+y^2\right)=36\)

    \(\Leftrightarrow M+4\left(x+y\right)^2=36\)

  \(\Leftrightarrow M=36-4\left(x+y\right)^2\le36\)

Dấu ''=" khi x = -y 

       Thế vào pt ban đầu sẽ tìm đc giá trị cụ thể của x ; y

Nguyễn Thị Thanh Trang
Xem chi tiết
tth_new
18 tháng 8 2019 lúc 8:13

a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự hai BĐT còn lại và cộng theo vế suy ra:

\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)

Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó

Is it true?

Phùng Minh Quân
18 tháng 8 2019 lúc 9:07

\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)

\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)

\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)

\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Tá Tài Hồ
20 tháng 7 2021 lúc 9:59

bạn ơi. Bạn có đáp án của bài này chưa vậy. Cho mik xin vs

mik đang cần gấp

 

Stepht Chim Ry
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 3 2017 lúc 6:11

Đáp án B.

Bùi Chí Phương Nam
Xem chi tiết
Hoàng Phúc
12 tháng 8 2016 lúc 10:52

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

Phan Hoàng Quốc Khánh
Xem chi tiết
Upin & Ipin
3 tháng 11 2019 lúc 20:59

neu de bai bai 1 la tinh x+y thi mik lam cho

Khách vãng lai đã xóa
Thanh Tùng DZ
4 tháng 11 2019 lúc 17:06

đăng từng này thì ai làm cho 

Khách vãng lai đã xóa
Kiệt Nguyễn
13 tháng 2 2020 lúc 14:56

We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)

\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)

\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)

\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)

\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)

(Dấu "="\(\Leftrightarrow x=0\))

Vậy \(P_{min}=2\Leftrightarrow x=0\)

Khách vãng lai đã xóa
tâm nguyễn
Xem chi tiết