Cho tam giác ABC có hai đường cao BM CN. Chứng minh nếu BM=CN thì tam giác ABC cân
Cho tam giác ABC có hai đường trung tuyến BM, CN.
a) Chứng minh nếu tam giác ABC cân tại A thì BM = CN.
b) Ngược lại nếu BM = CN, chứng minh:
i) GB = GC, GN = GM;
ii) BN = CM;
iii) tam giác ABC cân tại A.
Cho tam giác ABC cân tại A ) < 40+ có BM, CN là hai đường phân
giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân.
b) BE, CF là hai đường cao của tam giác ABC. Chứng minh EMNF là
hình thang cân
cho tam giác abc có hai đường trung tuyến bm và cn nếu bm=cn thì tam giác abc là tam giác gì
Do \(BM\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AM=CM\)
Và \(CN\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AN=BN\)
Mà \(BM=CN\left(gt\right)\)
Từ đó suy ra: \(AM=CM=AN=BN\)
Ta lại có: \(AM+CM=AC\)
Và \(AN+BN=AB\)
Nên: \(AM=CM=AN=BN\)
\(\Rightarrow AM+CM=AN+BN\)
\(\Rightarrow AC=AB\)
Vậy \(\Delta ABC\) có \(AC=AB\) là tam giác cân tại \(A\)
Cho tam giác ABC, có hai đường trung tuyến BM, CN. Chứng minh tam giác ANC = tam giác AMB. Chứng minh CN = BM
Sửa đề: ΔABC cân tại A
AB=AC
=>1/2AB=1/2AC
=>AN=AM
Xét ΔANC và ΔAMB có
AN=AM
góc NAC chung
AC=AB
=>ΔANC=ΔAMB
=>CN=BM
Cho tam giác ABC có 2 đường trung tuyến BM, CN cắt nahu tại điểm G.
a, C/m nếu tam giác ABC cân tại A thì BM = CN.
b, Ngược lại nếu BM = CN , c/m:
i,GB = GC, GN = GM;
ii, BN = CM
iii, Tam giác ABC cân tại A
Cho tam giác nhọn ABC .Hai đường cao BM cà CN của tam giác ABC cắt nhau tại H,biết BM=CN
a, Chứng minh tam giác ABC cân tại A
b,Chứng minh MN vuông góc với AH
Cho tam giác ABC, kẻ đường cao AH, BM, CN. Chứng minh rằng nếu: 1/AH2=1/BM2+1/CN2 thì tam giác ABC vuông tại A.
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN. Chứng minh rằng BM=CN
Xét △AMB và △ANC ta có:
AM=AN ( Vì M,N lần lượt là trung điểm của 2 cạnh AB, AC)
\(\widehat{A}\) là góc chung
AB=AC (Vì là hai cạnh bên trong tam giác cân)
\(\Rightarrow\Delta AMB=\Delta ANC\left(c-g-c\right)\)
\(\Rightarrow BM=CN\) (hai cạnh tương ứng)
Xét ΔAMB và ΔANC có
AM=AN
góc A chug
AB=AC
=>ΔAMB=ΔANC
=>BM=CN
Cho tam giác ABC cân tại A ( góc A < 40 độ) có BM,CN là hai đường phân giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC. Chứng minh EMNF là hình thang cân.