Tính: 1/2+1/2^3+1/2^5+1/2^7+...+1/2^99.
TÍNH NHANH
1) S= 1/1*2+1/2*3+1/3*4+...+1/99*100
2) S= 3/1*3+3/3*5+2/5*7+...+2/97*99
3) S= 4/5*7+4/7*9+4/9*11+...+4/59*61
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Bài 4: Tính tổng 1) 1 + (-2) + 3 + (-4) + . . . + 19 + (-20) 2) 1 – 2 + 3 – 4 + . . . + 99 – 100 3) 2 – 4 + 6 – 8 + . . . + 48 – 50 4) – 1 + 3 – 5 + 7 - . . . . + 97 – 99 5) 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
câu 7: tính T=(1/2-1/3)(1/2-1/5)(1/2-1/7)....(1/2-1/99)
\(T=(\frac{1}{2}-\frac{1}{3})(\frac{1}{2}-\frac{1}{5})(\frac{1}{2}-\frac{1}{7}).....(\frac{1}{2}-\frac{1}{99})\)
\(\implies T=\frac{1}{2}(1-\frac{2}{3}).\frac{1}{2}(1-\frac{2}{5}).\frac{1}{2}(1-\frac{2}{7}).....\frac{1}{2}(1-\frac{2}{99})\)
Thấy T có: (99-3):2+1=49(SH)
\(\implies T=(\frac{1}{2}.49).[(1-\frac{2}{3}).(1-\frac{2}{5})...(1-\frac{2}{99})\)
\(\implies T=\frac{49}{2}.\frac{1}{99}=\frac{49}{198}\)
Tính tống S=1+1/2+1/2^3+1/2^5+1/2^7+...+1/2^99+1/2^101
\(S=1+\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow S-1=\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{4}\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}\)
\(\Rightarrow\dfrac{1}{4}\left(S-1\right)-\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}-\dfrac{1}{2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{3}{4}\left(S-1\right)=\dfrac{1}{2^{103}}\)
\(\Rightarrow S-1=\dfrac{1}{2^{103}}:\dfrac{3}{4}\)
\(\Rightarrow S-1=\dfrac{4}{3.2^{103}}\)
\(\Rightarrow S=\dfrac{4}{3.2^{103}}+1\)
⇒S−1=12+123+125+...+12101⇒S−1=12+123+125+...+12101
⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101
⇒S−1=12103:34⇒S−1=12103:34
⇒S=43.2103+1
tính nhanh
e)A=1-2+3-4+...+99-100
g)B=1+3-5-7+9+11-...-397-399
h)C=1-2-3+4+5-6-7+..+97-98-99+100
i)D=2^100-2^99-2^98-..-2^2-2-1
Tính \(\frac{3^2+1}{3^2-1}+\frac{5^2+1}{5^2-1}+\frac{7^2+1}{7^2-1}+...+\frac{99^2+1}{99^2-1}\)
Câu này lớp 8 thôi nha . Mấy god lớp 9 thôi !! ( làm cx chả sao )
Soái ca 2k6 Làm đi bạn !!
\(\frac{3^{2}+1}{3^{2}-1}+\frac{5^{2}+1}{5^{2}-1}+...+\frac{99^{2}+1}{99^{2}-1}=49+\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}=49+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}=49.49\)
\(\frac{3^2+1}{3^2-1}+\frac{5^2+1}{5^2-1}+\frac{7^2+1}{7^2-1}+...+\frac{99^2+1}{99^2-1}\)
\(=\frac{3^2-1+2}{3^2-1}+\frac{5^2-1+2}{5^2-1}+\frac{7^2-1+2}{7^2-1}+...+\frac{99^2-1+2}{99^2-1}\)
\(=1+\frac{2}{3^2-1}+1+\frac{2}{5^2-1}+1+\frac{2}{7^2-1}+...+1+\frac{2}{99^2-1}\)
\(=\left(1+1+...+1\right)+\left(\frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+...+\frac{2}{\left(99-1\right)\left(99+1\right)}\right)\)
\(=49+\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)\)
\(=49+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=49+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=49+\frac{49}{100}\)
\(=\frac{4949}{100}\)
1.tính
a)1-2+3-4+5-6+7-8+8-9+9-10
b)1-2+3-4+...+99-100
c)1-3+5-7+9-11+13-15
d)1-3+5-7+...+99-101
e)-1-2-3-4-...-99-100
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
1. Tính tổng:
1/ 1 + (-2) + 3 + (-4) +...+ 19 + (-20)
2/ 1 - 2 + 3 - 4 +..+ 99 - 100
3/ 2 - 4 + 6 - 8 +...+ 48 - 50
4/ -1 + 3 - 5 + 7 -...+ 97 - 99
5/ 1 + 2 - 3 - 4 +...+ 97 + 98 - 99 - 100
TÍNH TỔNG:
1. 1+(-2)+3+(-4)+...+19+(-20)
2. 1-2+3-4+...+99-100
3. 2-4+6-8+...+48-50
4. -1+3-5+7-...+97-99
5. 1+2-3-4+...+97+98-99-100