Đặt \(S=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}\)
\(\Rightarrow\frac{1}{2^2}S=\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+.....+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{4}S=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}-\frac{1}{2^3}-\frac{1}{2^5}-\frac{1}{2^7}-....-\frac{1}{2^{101}}\)
\(\Rightarrow S\frac{1}{3}=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\Rightarrow S=\frac{3}{2}-\frac{3}{2^{101}}\)
Vậy \(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}=\frac{3}{2}-\frac{3}{2^{101}}\)