Tìm x,y\(ℤ\in\)biết:
\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
Tìm x ; y ; z \(\in\)\(ℤ\)biết :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
P/s : Làm đc duyệt luôn =))
giả sử: x ≥ y ≥ z > 0 => 1/x ≤ 1/y ≤ 1/z
=> 1 = 1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z => z ≤ 3 => z = 1,2,3
với z = 1 => 1/x + 1/y = 0 vô lý vì x,y ∈ N*
với z = 2 => 1/x + 1/y = 1/2 => 1/2 = 1/x + 1/y ≤ 2/y => y ≤ 4 =>y = 2,3,4 (vì y≤ z)
---y = 2 => 1/x = 0 vô lý (loại)
---y = 3 => 1/x = 1/2 - 1/3 = 1/6 => x = 6
---y = 4 => 1/x = 1/2 - 1/4 = 1/4 => x = 4
với z = 3 => 1/x + 1/y = 1 - 1/3 = 2/3 => 2/3 = 1/x +1/y ≤ 2/y => y ≤ 3 => y = 3 (vì y≤ z)
=> x = 3
vậy (*) có nghiệm (x;y;z) = (6;3;2) (4;4;2)(3,3;3) và các hoán vị của các bộ 3 trên.
1) Tìm x,y biết : \(\frac{x}{5}\)+ \(\frac{y}{4}\)và 2x + y = 28
2) Tìm a,b,c,d \(\in\) \(ℤ\) biết : \(\frac{a}{15}\)= \(\frac{b}{7}\)= \(\frac{c}{3}\)= \(\frac{d}{1}\) và a - b + c - d = 10
3) Tìm a,b,c \(\in\) \(ℤ\) biết : \(\frac{a-1}{2}\) = \(\frac{b+3}{4}\) = \(\frac{c-5}{6}\) và 5c - 3x - 4b = 50
4) Tìm a,b,c \(\in\) \(ℤ\) biết : \(\frac{a}{3}\) = \(\frac{b}{2}\) ; \(\frac{b}{7}\) = \(\frac{c}{5}\) và 3a + 5c - 7b = 30
Cảm ơn những bạn đã gửi câu trả lời cho mình :D
1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
Tìm x,y và z \(\in\)\(ℤ\)biết:
a, 42 - 3|y - 3| = 4(2019 - x)4
b, Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
C/minh \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Aiiii nhanhhh và đúnggg tickkk nheeeee ~ Nhanhhh nhaaa m.n ~~
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Leftrightarrow\frac{12x-8y}{4^2}=\frac{6z-12x}{3^2}=\frac{8y-6z}{2^2}=\frac{12x-8y+6z-12x+8y-6z}{4^2+3^2+2^2}=0\)(tính chất dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(\text{đpcm}\right)\)
Mày làm ngu vl
Dume nick t bị hack r
Điều kiện để hàm số y=\frac{1+\cos x}{\sin x}y=sinx1+cosx xác định là
x\ne k\pi ,k\in ℤ.x=kπ,k∈Z.
x\ne -\pi +k2\pi ,k\in ℤ.x=−π+k2π,k∈Z.
x\ne \frac{\pi }{2}+k\pi ,k\in ℤ.x=2π+kπ,k∈Z.
x\ne \frac{\pi }{2}+k2\pi ,k\in ℤ.x=2π+k2π,k∈Z.
Bạn kiểm tra lại đề bài!
Hình như đề bài ko đúng đó bn!..bn kiểm tra lại
Tìm \(x,y,t\) \(\in\)\(ℤ\) biết: \(\frac{-48}{-12}\) \(=\) \(\frac{12}{x}\) \(=\) \(\frac{y^2}{9}\) \(=\) \(\frac{-256}{t^2}\)
Ta có: \(\frac{-48}{-12}=\frac{12}{x}\Rightarrow x=\frac{\left(-12\right).12}{-48}=3\)
Thế x = 3 \(\Rightarrow\frac{12}{3}=\frac{y^2}{9}\Rightarrow y^2=\frac{12.9}{3}=36\Rightarrow y=\pm6\)
Thế x = 3 \(\Rightarrow\frac{12}{3}=\frac{-256}{t^2}\Rightarrow t^2=\frac{3.\left(-256\right)}{12}=-64\Rightarrow t\in\varnothing\)
Vậy \(x=3;y=\left\{6;-6\right\},t\in\varnothing\)
tìm x,y biết: \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\left(x,y\in Z,x\ne0,y\ne0\right)\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Tìm x \(\in\)\(ℤ\)biết :
\(\frac{13+x}{7-y}=\frac{7}{3}\)và \(x-y=10\)
Từ \(x-y=10\Rightarrow x=10+y\)
Khi đó \(\frac{13+10+y}{7-y}=\frac{7}{3}\Leftrightarrow\frac{23+y}{7-y}=\frac{7}{3}\Leftrightarrow3\left(23+y\right)=7\left(7-y\right)\Leftrightarrow69+3y=49-7y\)
\(\Leftrightarrow3y+7y=49-69\Leftrightarrow10y=-20\Leftrightarrow y=-2\Rightarrow x=10+\left(-2\right)\Leftrightarrow x=8\)
Vậy \(\left(x;y\right)=\left(8;-2\right)\)
Ta có x-y=10 => y=x-10
Thay y=x-10 vào bt trên ta được
\(\frac{13+x}{7-\left(x-10\right)}=\frac{7}{3}\)=> \(\frac{13+x}{7-x+10}=\frac{7}{3}\)=> \(\frac{13+x}{17-x}=\frac{7}{3}\) => 3(13+x)=7(17-x) => 39+3x=119-7x => 3x+7y=119-39 => 10x=80 => x=8
Vậy x=8
còn cách giải khác là bạn tìm y theo x rồi tính x nhé
a ) Tính A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
b ) Tìm x và y biết : x , y \(\in\) Z và 2x + 2y = 2x+y
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì A là tích của 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)=\frac{-101}{200}\)
b) 2x + 2y = 2x+y
=> 2x = 2x.2y - 2y
=> 2x = 2y.(2x - 1)
\(\Rightarrow2^x⋮2^x-1\)
Mà (2x; 2x - 1) = 1
\(\Rightarrow\begin{cases}2^x-1=1\\2^y=2^x\end{cases}\)\(\Rightarrow\begin{cases}2^x=2=2^1\\x=y\end{cases}\)=> x = y = 1
Vậy x = y = 1
tìm x,y biết\(\frac{x^2+y^2}{1+x^2+y^2}=\frac{x^2}{1+x^2}=\frac{y^2}{1+y^2}\)