bài 1 thực hiện phéptính
a) 2011+2010(-4x5^2+11x3^2)^2009
b)1+3-7+11-15+19-23+...+99-103
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(I=1+2-3-4+5+6-7-8+....+2009+2010\)
\(K=2011+2010\left(-4\cdot5^2+11+3^2\right)^{2009}\)
\(L=1+3-7+11-15+19\cdot23+...+99-103\)
help me !!!!!!!!!!!!!!
Nhanh nhất 1tick
\(I=\left(1+5+...+2009\right)+\left(2+6+...+2010\right)-\left(3+7+...+2007\right)-\left(4+8+...+2008\right)\)
\(=\frac{\left(2009+1\right).\left[\left(2009-1\right):4+1\right]}{2}+\frac{\left(2010+2\right)\left[\left(2010-2\right):4+1\right]}{2}\)
\(-\frac{\left(2007+3\right).\left[\left(2007-3\right):4+1\right]}{2}+\frac{\left(2008+4\right)\left[\left(2008-4\right):4+1\right]}{2}\)
\(=\frac{2010.503}{2}+\frac{2012.503}{2}-\frac{2010.502}{2}-\frac{2012.502}{2}\)
\(=1005+1006=2011\)
1+3-7+11-15+19-23+...+99-103
ai xong trước tui tk
\(A=1+3-4+11-15+19-23+...+99-103\)
\(A=1+\left(3-7\right)+\left(11-15\right)+\left(19-23\right)+...+\left(99-103\right)\)
\(A=1+\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(A=1+\left(-4\right).13\)
\(A=1+\left(-52\right)\)
\(A=-51\)
Tính nhanh :
1+3-7+11-15+19-23+...+99-103
dễ ẹc
Ta có :
3-7=11-15=...=99-103
Từ 3 đến 103 có số số hạng là :
( 103 - 3 ) : 4 + 1 = 26 ( số )
Từ 3 đến 103 có số cặp là :
26 : 2 = 13 ( cặp )
Vậy1+ 3-7+11-15+19-23+...+99-103 = 13 . (-4) +1 = -51
Đáp Số : -51
Thực hiện phép tính
(1+2+3+4+.....+2010)*(1+2^2+3^3+......+2010^2010+2011^2011)*(17017-7*11*13*170)
(1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 7.11.13.170)
= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 170170)
= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011). 0
= 0
Thực hiện phép tính:
a. 7/-25 + -18/25 + 4/23 + 5/7 + 19/23
b. -2 + 15/19 + -15/17 +15/23 + 4/19
c. -5/11 + [-6/11 +1]
d. 1,4 . 15/49 - [4/5 + 2/3] : hai một phần năm
e. 7/19 .8/11 + 7/19 . 3/11 + 12/19
\(\dfrac{7}{-25}+\dfrac{18}{25}+\dfrac{4}{23}+\dfrac{5}{7}+\dfrac{19}{23}\)
=\(\left(\dfrac{-7}{25}+\dfrac{18}{25}\right)+\left(\dfrac{4}{23}+\dfrac{19}{23}\right)+\dfrac{5}{7}\)
= \(\dfrac{11}{25} +1+\dfrac{5}{7}\)
= \(1\dfrac{11}{25}+\dfrac{5}{7}\)
= \(2\dfrac{27}{175}\)
b) \(-2+\dfrac{15}{19}+\dfrac{-15}{17}+\dfrac{15}{23}+\dfrac{4}{19}\)
=\(-2+\left(\dfrac{ }{ }\right)\)
tink tổng sau thành 1 cach hợp lí
B = 3+7+11+15+19+23+27+.....+99+103
ai nhanh nhất mink tick cho thứ 2 mink cần rùi
Số số hạng của tổng B là :
(103-3): 4 +1 = 26 ( số hạng )
Tổng B là :
(103+3).26:2 = 1378
số số hạng là : (103-3)/4 +1= 26 ( số hạng )
Tổng B là : (103+3).26/2= 1378
1) 1/1×2 + 2/2×4 + 3/4×7 + 4/7×11 +...+ 8/29×37 + 9/37×46 + 10/46×56
2) 4/3×7 + 4/7×11 + 4/11×15 + 4/15×19 + 4/19×23 + 4/23×27
3) 4/3×6 + 4/6×9 + 4/9×12 + 4/12×15 + ... + 4/99×102
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
Bài 1: A=2/3*7 + 2/7*11 + 2/11*15+ ... +2/99*103 Bài 2: A=7/2 + 7/6 + 7/12 + 7/20 + 7/30 + 7/42 + 7/56 + 7/72 + 7/90 Bài 3: A=505/10*1212 + 505/12*1414 + 505/14*1616 +...+ 505/96*9898 Bài 4: A=2/1*3 - 4/3*5 - 6/5*7 - ... - 20/19*21 Bài 5: A=1 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 :>
\(1,A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\\ 2A=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{99}-\dfrac{1}{103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{103}=\dfrac{100}{309}\\ A=\dfrac{100}{309}\cdot\dfrac{1}{2}=\dfrac{50}{309}\)
\(2,A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\\ A=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\\ A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=7\left(1-\dfrac{1}{10}\right)=7\cdot\dfrac{9}{10}=\dfrac{63}{10}\)
Bài 1:
Ta có: \(A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\)
\(=\dfrac{1}{2}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{100}{309}=\dfrac{50}{309}\)
Bài 2:
Ta có: \(A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\)
\(=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)
\(=7\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{63}{10}\)
Ai giúp gấp đi ạ !
Tính nhanh
A) B =3/2×5+3/5×8+3/8×11+3/11×14
B)3/1×2+3/2×3+3/3×4+...+3/99×100
C)4 /3×7+4/7×11+4/11×15+4/15×19+4/19×23+4/23×27
D) (1-1/3)×(1-1/4)×(1-1/5)×(1-1/6)×...×(1-1/99)
a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)