Tìm STN x sao cho 4cm, 12cm và x cm là độ dài ba đường cao của một tam giác
tìm độ dài ba cạnh của một tam giác biết chu vi laf12 cm, và độ dài ba đường cao của nó là 4cm; 3cm; 2,4cm
Một tam giác có độ dài ba cạnh là 6cm, 8cm và 13cm. Một tam giác khác đồng dạng với tam giác đã cho co độ dài ba cạnh là 12cm, 9cm và x (cm). Độ dài x là:
A. 17,5cm; B. 15cm; C. 17cm; D. 19,5cm.
Hãy chọn câu trả lời đúng.
Cho tam giác ABC có độ dài ba cạnh là: AB=9cm, AC=12cm, BC=6cm. Trên AB lấy điểm D sao cho AD=4cm, trên AC lấy điểm E sao cho AE=3cm. a) CM tam giác AED và tam giác ACB đồng dạng b) Gọi F là giao điểm của ED và BC. Tính FB, FD . (^•^, Các bạn giúp mình với nha,^•^)
Cho tam giác ABC vuông tại A có đường cao AH.Cho biết: AB=15cm, AH=12cm
a) CM: tam giác ABH và tam giác CHA đồng dạng
b) Tính độ dài các đoạn thẳng BH,HC,AC ?
c) Trên cạnh AC lấy điểm E sao cho CE=5cm, trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CEF vuông ?
d) CM: CE.CA=CF.CB ?
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
BC=15^2/9=25(cm)
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
c: CE/CB=CF/CA
góc C chung
=>ΔCEF đồng dạng với ΔCBA
=>góc CFE=góc CAB=90 độ
=>ΔCEF vuông tại F
d: CE/CB=CF/CA
=>CE*CA=CF*CB
Tìm độ dài ba cạnh của một tam giác .Biết rằng ba đường cao của tam giác tỉ lệ nghịch với 5;7;8 và chu vi của tam giác là 60 cm
Lười lắm hướng dẫn giải thôi
gọi 3 cạnh đó là x;y;z ( x;y;z >0 , cm)
vì ba đường cao của tam giác tỉ lệ nghịch với 5;7;8
=> x.5=y.7=z.8
=> \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{8}}\)
áp dụng t/c dãy tỉ số = nhau rồi cộng 3 cái lại xét x= ? ; y=? ; z=?
cho mình hỏi đề bài người ta nói mình tìm độ dài của 3 cạnh chứ ko phải tìm đường cao
Trình Nguyễn Quang Duy
sr mik ko đọc kĩ đề để tẹo mik giải lại
Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.
Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?
a) 5cm, 12cm, 9cm b) 12 cm, 16 cm, 20 cm
Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE.
a) Chứng minh: ΔABD = ΔACE.
Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC
c) Chứng minh ∆BMC cân.
Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.
b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD
c) Chứng minh AB // CD.
d) Chứng minh:
Bài 11: Cho tam giác ABC có BA < BC và
a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.
b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.
c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.
Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:
a) BD = CE.
b) Tam giác GDE cân.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.
d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?
2: BC=căn 6^2+8^2=10cm
3:
a: 5cm; 12cm; 9cm
5+12>9; 5+9>12; 12+9>5
=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác
b: 12+16>20; 12+20>16; 20+16>12
=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác
4:
Xét ΔABD và ΔACE có
AB=AC
góc BAD chung
AD=AE
=>ΔABD=ΔACE
10:
a: AB=căn 10^2-6^2=8cm
b: Xét ΔMAC và ΔMDB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔMAC=ΔMDB
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB//CD
Ba đường cao của tam giác ABC có độ dài bằng 4;12;x. Biết rằng x là một số tự nhiên. Tìm x(cho biết mỗi cạnh của tam giác nhỏ hơn tổng 2 cạnh kia và lớn hơn hiệu của chúng).
Chu vi của một tam giác là 60cm . Các đường cao có độ dài 12cm , 15cm và 20cm . Tìm độ dài mỗi cạnh của tam giác này
Giải
Gọi độ dài ba cạnh của tam giác là x , y , z (cm) ( x , y , z > 0 )
Ta có: S =12 .12x = 12 .15y = 12 .20z
⇔ 12x = 15y = 20z
⇔ \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{60}{\frac{1}{5}}=60.5=300\)
\(\Leftrightarrow\hept{\begin{cases}x=300.\frac{1}{12}=25\\y=300.\frac{1}{15}=20\\z=300.\frac{1}{10}=15\end{cases}}\)
Vậy mỗi cạnh là 25 , 20 , 15
Gọi độ dài ba cạnh của tam giác là a, b, c
Độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao :
12a=15b=20c và a+b+c=60
a/1/12=b/1/15=c/1/20 va a+b+c=60
Ap dung tinh chat day ti so bang nhau :
a/1/12=b/1/15=c/1/20=a+b+c/1/12+1/15+1/20=60/1/5=300
Suy ra :a/1/12=300=>a=300.1/12=25
b/1/15=300=>b=300.1/15=20
c/1/20=300=>c=300.1/20=15
Vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm
Bài 1 Cho tam giác vuông có số đo hai cạnh góc vuông lần lượt là 3cm và 4cm Hãy tính số đo của các cạnh còn lại
Bài 2 Cho tam giác ABC có cạnh AB dài 25cm Trên cạnh BC lấy hai điểm M N sao cho độ dài đoạn BM bằng 2 phần 6 độ dài BC độ dài đoạn BC = 1,6 độ dài đoạn BC biết chiều cao kẻ từ B của tam giác a m b là 12cm Tìm diện tích hình tam giác ABC tính diện tích hình tam giác amn