cho \(x^2+y^2=1\).Tìm max P=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
x,y dương x+y=2. Max
T=\(\sqrt{1+\frac{1}{x}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y}+\frac{1}{\left(y+1\right)^2}}\) +\(\frac{4}{\left(x+1\right)\left(y+1\right)}\)
Sửa đề: \(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(x+1\right)}\)
Rồi để ý: \(1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{x}-\frac{1}{\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1\)
\(=\left[\frac{1}{x\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1=\left[\frac{1}{x\left(x+1\right)}+1\right]^2=\left[1+\frac{1}{x}-\frac{1}{x+1}\right]^2\)
Tương tự với y rồi thế vào căn là xong:D
cho x,y là số thực không âm
Tìm Max P = \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
cho x;y;z thỏa mãn x+y+z=3.Tìm Min của biểu thức:
\(A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
Ta có
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)
\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)
Kết hợp với điều kiện ban đầu thì
GTNN của A là 0 đạt được khi
\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
câu 1: giải hệ phương trình
\(\left(x+y\right)^2+\left(y+z\right)^4+....+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
\(\left(xy\right)^2+2\left(yz\right)^4+....+100\left(zx\right)^{100}=-[\left(x+y+z\right)+2\left(yz+zx+xy\right)+......+99\left(x+y+z\right)]\)\(\left(\frac{1}{x}+\frac{1}{y}\right)^2+\left(\frac{1}{y^2}+\frac{1}{z^2}\right)^2+...+\left(\frac{1}{x^{99}}+\frac{1}{z^{99}}\right)^2=-\frac{1}{\left(xy\right)^2+2\left(yz\right)^2+.....+99\left(zx\right)^2}\)
tìm x,y,z
Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:
ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\) nên phương trình 1 vô lý
tương tự chứng minh phương trinh 2 và 3 vô lý
vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)
thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm
\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)
Ta dễ dàng nhận thấy tất cả số mũ đều chẵn
\(=>A\ge0\)(1)
Đặt : \(B=-\left(y+z+x\right)\)
\(=>B\le0\)(2)
Từ 1 và 2 \(=>A\ge0\le B\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)
Do \(B=0< =>y+z+x=0\)(3)
\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)
Từ 3 và 4 \(=>x=y=z=0\)
Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}
Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)
Ta thấy các số mũ đều chẵn
Nên \(A\ge0\left(1\right)\)
Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)
Vì có dấu âm ở trước VT
Nên \(B\le0\left(2\right)\)
Từ 1 và 2 <=> \(A=B=0\)
\(< =>x=y=z=0\)
Cho \(A=\frac{x^2}{\left(1-x\right)\left(x+y\right)}-\frac{y^2}{\left(x+1\right)\left(x+y\right)}-\frac{x^2.y^2}{\left(1-y\right)\left(1+x\right)}\)
Cho P= \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) tìm đkxđ, rút gọn P
b)Tìm x,y t/m phg trình P=2
cho 3 số x;y;z thỏa mãn x+y+z=3.Tìm Min của biểu thức:
P=\(\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
bài này cần x,y,z>0 nữa, vừa xem xong bài y hệt của LCC :v
Dự đoán dấu "=" khi \(x=y=z=1\) thì \(P=24\)
Ta chứng minh P=24 là GTNN
Thật vậy áp dụng BĐT C-S ta có:
\(P=Σ\frac{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}{\left(z^2+1\right)\left(x+y\right)^2}\ge\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\)
Cần chứng minh: \(\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\ge24\)
\(\Leftrightarrow\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2\ge24Σ\left(z^2+1\right)\left(x+y\right)^2\)
Đặt \(\hept{\begin{cases}x+y+z=3u\\xy+yz+xz=3v^2\\xyz=w^3\end{cases}}\) \(\Rightarrow u=1\) thì
\(Σ\left(x+1\right)\left(y+1\right)\left(z+1\right)=Σ\left(x^2y+x^2z+2x^2+2xy+2x\right)\)
\(=9uv^2-3w^3+2u\left(9u^2-6v^2\right)+9uv^2+6u^3=3\left(8u^3+uv^2-w^3\right)\)
Và \(Σ\left(z^2+1\right)\left(x+y\right)^2=2Σ\left(x^2y^2+x^2yz+x^2u+xyu^2\right)\)
\(=2\left(9v^4-6uw^3+3uw^3+9u^4-6u^2v^2+3u^2v^2\right)\)
\(=6\left(3u^4-u^2v^2+3v^4-uw^3\right)\). Can cm \(f\left(w^3\right)\ge0\)
\(f\left(w^3\right)=\left(8u^3+uv^2-w^3\right)^2-16\left(3u^6-u^4v^2+3u^2v^4-u^3w^3\right)\)
\(f'\left(w^3\right)=-2\left(8u^3+uv^2-w^3\right)+16u^3=2w^3-2uv^2\le0\)
Thay \(f\) la ham` ngh!ch bien, do đó, BĐT có 1 GTLN của w3 khi 2 biến bằng nhau
Đặt \(y=x;z=3-2x\), Khi đó:
\(BDT\Leftrightarrow\left(x-1\right)^2\left(x^4-2x^3-11x^2+24x+4\right)\ge0\)
cho 3 số x;y;z>0 thỏa mãn x+y+z=3.Tìm Min của biểu thức:
\(A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)