chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}\) < \(\frac{1}{2}\)
Chứng minh rằng với số tự nhiên n ta có:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}\)
chứng minh rằng
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....\frac{1}{n^2+\left(n+1\right)^2}>\frac{9}{20}\)
Bài 5 :
a) Tính giá trị của biểu thức :
\(A=\frac{\left(81,624:4\frac{4}{3}-4.505\right)^2+125\frac{3}{4}}{\left\{\left[\left(\frac{11}{25}\right)^2:0,88+3,53\right]^2-\left(2,75\right)^2\right\}:\frac{13}{25}}\)
b) Chứng minh rằng tổng :
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^n}+...+\frac{1}{2^{2002}-}-\frac{1}{2^{2004}}< 0,2\)
làm lần lượt các số hạng rồi sẽ ra
1.Chứng minh:
S1=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+.....+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\)
Ta có:\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)
\(\Rightarrow\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2n\left(n+1\right)}\)
Áp dụng vào bài toán,ta có:
\(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+\frac{1}{3^2+4^2}+......+\frac{1}{n^2+\left(n+1\right)^2}\)
\(< \frac{1}{2\cdot1\cdot2}+\frac{1}{2\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{2\cdot n\cdot\left(n+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}-\frac{1}{2\left(n+1\right)}\)
\(< \frac{1}{2}\)
Bài 1 ; \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......+\frac{1}{1+2+3+4+.....+2010}\)
Bài 2 : CHỨNG MINH RẰNG: Với mọi số nguyên n>1 , ta có :
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+.....+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)
Chứng minh \(\forall n\in\)N* thì\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
chứng tỏ rằng với mọi n thuộc N* ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
với n thuộc N* hãy chứng tỏ rằng :
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)