Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
乡☪ɦαทɦ💥☪ɦųα✔
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 10 2020 lúc 12:58

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

Khách vãng lai đã xóa
Guyn
Xem chi tiết
Trần Đức Thắng
30 tháng 8 2015 lúc 23:03

câu 2  :

ab+  bc + ca = 2015 

=> 2015 +a^2 = a^2 + ab + bc + ca 

=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)

Tương tự : 2015+b^2 = ( b + c )(b +a )

 2015 + c^2 = ( c + a )(c + b ) thay vào ta có :

( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương 

Trần Đức Thắng
30 tháng 8 2015 lúc 23:09

Câu 1 ) :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)

=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)

=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)

=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0 

=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0

=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)

=> 2015 - z =  0 hoặc 2015 -x = 0 hoặc 2015 - y = 0 

=> z = 2015 hoặc x= 2015 hoặc y = 2015 

Vậy trong ba số có ít nhất 1 số bằng 2015 

Trần Đức Thắng
30 tháng 8 2015 lúc 23:20

Câu này olm phải chọn câu dưới em vừa làm vừa nghĩ

Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 10 2016 lúc 11:15

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

Blue Moon
Xem chi tiết
Pham Van Hung
13 tháng 10 2018 lúc 15:31

     

     \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)

\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)

Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)

-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)

Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)

kudoshinichi
14 tháng 10 2018 lúc 8:37

tự túc

nguyen nguyet anh
Xem chi tiết
Đặng Ngọc Quỳnh
4 tháng 10 2020 lúc 10:25

Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành: 

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)

\(\Rightarrow x=2018;y=2019;z=2020\)

Khách vãng lai đã xóa
The Angry
4 tháng 10 2020 lúc 10:25

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)

\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)

\(x=2018,y=2019,z=2020\)

Khách vãng lai đã xóa
Khánh Ngọc
4 tháng 10 2020 lúc 10:36

ĐK : \(\hept{\begin{cases}x>2014\\y>2015\\z>2016\end{cases}}\)

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2014}-1}{x-2014}+\frac{1}{4}-\frac{\sqrt{y-2015}-1}{y-2015}+\frac{1}{4}-\frac{\sqrt{z-2016}-1}{z-2016}=0\)

\(\Leftrightarrow\frac{x-2010-4\sqrt{x-2014}}{4\left(x-2014\right)}+\frac{y-2011-4\sqrt{y-2015}}{4\left(y-2015\right)}+\frac{z-2012-4\sqrt{z-2016}}{4\left(x-2014\right)}=0\)

\(\Leftrightarrow\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}+\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}+\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}=0\)( 1 )

Mà \(\hept{\begin{cases}\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}\ge0\forall x>2014\\\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}\ge0\forall y>2015\\\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}\ge0\forall z>2016\end{cases}}\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\hept{\begin{cases}\left(2-\sqrt{x-2014}\right)^2=0\\\left(2-\sqrt{y-2015}\right)^2=0\\\left(2-\sqrt{z-2016}\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}\sqrt{x-2014}=2\\\sqrt{y-2015}=2\\\sqrt{z-2016}=2\end{cases}}\)<=>\(\hept{\begin{cases}x=2018\\y=2019\\z=2020\end{cases}}\)( tmđk )

Vậy ( x ; y ; z ) = ( 2018 ; 2019 ; 2020 )

Khách vãng lai đã xóa
do linh
Xem chi tiết
mi ni on s
13 tháng 5 2018 lúc 21:16

        \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)   (do x+y+z = 2015)

\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

đến đây tự lm nốt nha

QUan
Xem chi tiết
bt ko
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 9 2019 lúc 20:25

Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)

\(\sqrt{y-2014}=b\left(b>0\right)\)

\(\sqrt{z-2015}=c\left(c>0\right)\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)

<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)

<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)

<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).

\(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)

\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)

\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)

=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)

Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)

Thanh Bình đẹp Gái
1 tháng 9 2019 lúc 20:05

ko bt