Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hatsune Miku
Xem chi tiết
Nguyen Quang Dat
2 tháng 3 2017 lúc 12:55

ko bt ban oi

Phạm Mỹ Ngọc
Xem chi tiết
hoang nguyen truong gian...
1 tháng 1 2016 lúc 19:52

n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)

+) n = 3k + 1 => n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1

+) n = 3k + 2 => n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1

Vậy trong cả 2 trường hợp, n2 chia 3 dư 1

Nobita Kun
1 tháng 1 2016 lúc 19:51

Vì n2 là số chính phương nên n2 chia hết cho 3 hoặc chia 3 dư 1

Mà n không chia hết cho 3 => n2 không chia hết cho 3

Từ 2 điều trên => n2 chia 3 dư 1

Vậy...

Miyuhara
1 tháng 1 2016 lúc 19:55

n là số tự nhiên không chia hết cho 3 => n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

Với n = 3k + 1 thì n2 = (3k + 1)2 = 3k.3k + 3k + 3k + 1 chia 3 dư 1

 Với n = 3k + 2 thì n2 = (3k + 2)2 = 3k.3k + 6k + 6k + 2 chia 3 dư 2 

Vậy n2 chia 3 dư 1 hoặc 2

tran thuy trang
Xem chi tiết
Trang
Xem chi tiết
Trịnh Loan Trang
Xem chi tiết
Phạm Anh Khoa
24 tháng 11 2016 lúc 22:00

Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )

a) n+3 : n-2

=> n+3 : n+3-5 

=> n+3 : 5 ( Vì n+3 : n+3 )

=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!

b) 2n+9 : n-3

=> n + n + 11 - 3 : n-3 

=> n + 11 : n-3

=> n + 14 - 3 : n-3

=> 14 : n - 3 ( Vì n - 3 : n-3 )

=> n-3 là Ư(14) => Tự làm tiếp

c) + d) thì bạn tự làm nhé!

-> Chúc bạn học giỏi :))

nguyễn ngọc trang
Xem chi tiết
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
29 tháng 7 2017 lúc 14:39

Xét \(n=2k+1\)

\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)

Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1 

\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3

\(\Rightarrow3.9^k+1\)chia 5 dư - 2  hoặc 4

\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)

Xét \(n=2k\)

\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)

Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.

\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.

\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)

Nhok nấm lùn____2k7
Xem chi tiết
shitbo
24 tháng 11 2018 lúc 20:13

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

Hồ Trương Minh Trí
Xem chi tiết