tren canh huyen BC cua tam giac vuong ABC, lay cac diem D va E sao cho BD=BA, CE=CA. tinh goc DAE
Tren canh huyen BC cua tam giac ABC lay D va E sao cho BD=DA, CE=CA. Tinh goc DAE
cho tam giac abc can tai a co goc bac =50do tren tia doi cua tia bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ba ce=ca tinh goc dae
cho tam giac abc deu ve ben ngoai tam giac cac tam giac abd vuong can tai b tam giac ace vuong can tai c tinh so goc nhon cua ade
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
cho tam giac abc vuong tai a.tren canh huyen bc lay diem d,e sao cho bd =ba;ce=ca.tinh goc dae
cho tam giac ABC vuong o A. tren canh AC lay diem D sao cho goc ABD=1/3goc ABC, tren canh AB lay diem E sao cho goc ACE=1/3goc ACB. goi F la giao diem cua BD va CE.
a. tinh goc BFC
b. tia phan giac cua cac goc BFC va FBC cat nhau o I. c/m tam giac DIE la tam giac can
tam giac ABC co canh BC la canh lon nhat . Tren canh BC lay diem D va E sao choa BD=BA va CE=CA . Tia phan giac cua goc B cat AE tai M; tia phan giac cua goc C cat AD tai N. Chung ming rang tia phan giac cua goc BAC vuong goc voi MN
cho tam giac nhon ABC, ve BD vuong goc AC tai D va CE vuong goc AB tai E. Cac duong thang BD va CE cat nhau tai H. Goi diem M la trung diem cua canh CB. Tren tia doi cua tia MH lay diem K sao cho MH=MK. a) chung minh: tam giac BMH=tam giac CMK, b) chung minh: CK vuong goc AC, c) ve HI vuong goc BC tai I, tren tia HI laydiem G sao cho HI=IG. Chung minh: GC=BK
bai 1:cho tam giac ABC vuong tai A,phan giac AD tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc BC
b)biet gocADH=110 đo.Tinh goc ABD
bai2:cho tam giac ABC co AB=AC=BC.Cac tia phan giac BD va CE cat nhau tai O.CMR:
a)BD vuong goc AC va CE vuong goc AB
b)OA=OB=OC
c)goc AOB=goc BOC=goc COA;tu do suy ra so do cua moi goc ay
bai3:cho O la mot diem cua AB.tren hai nua mat phang doi nhau bo AB ve cac tia Ax va By cung vuong goc voi AB.Lay diem M tren tia Ax,diem N tren tia By sao cho AM=BN.CMR:o la trung diem cua MN
bai 4:cho tam giac ABC vuong tai A co goc C=45 do.Ve phan giac AD.Tren tia doi cua tia AD lay diem E sao cho AE=BC.Tren tia doi cua tia CA lay diem F sao cho CF=AB.CMR:BE=BF va BE vuong goc BF
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
1.cho tam giac ABC can tai dinh A, trung truc cua canh AC cat CB tai diem D (D nam ngoai doan BC). tren tia doi cua tia AD lay diem E sao cho AE= BD. chung minh tam giac DEC can.( goi y can chung minh CD = CE)
2. cho tam giac ABC co AB < AC, lay diem E tren canh CA sao cho CE=BA, cac duong trung truc cua cac doan thang BE va CA cat nhau tai I
a)chung minh tam giac AIB = tam giac CIE
b)chung minh AI la tia phan giac cua goc BAC
Cho tam giác ABC can tai A goc A tu tren canh Bc lay diem D tren tia doi CB lay diem E sao cho
BD=CE tren tia doi tia CA lay diem I sao cho CI=CA , tu D va E ke cac duong thang cung vuong goc
Voi BC cat AB ,AI lan luot M vaN
A.CMR:BM=CN
b.CMR:chu vi tam giac AABC nho hon chu vi tam giac AMN