Cho biểu thức A= 3+32+33+...+3120. Tìm số tự nhiên n thỏa mãn 2A + 3 là ...
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y
Mọi người cứu với
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)
Cho biểu thức A=3+32+33+...........+3120
Số tự nhiên n thỏa mãn 2A+3=3n là...........
\(A=3+3^2+3^3+...+3^{120}\)
\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
vậy ...
cho biểu thức: 3+3^2+3^3+.......3^120
số tự nhiên n thỏa mãn: 2A+3=3^n
Cho A = 3 + 32 + 33 + ...+ 3120
a) c/m A chia hết cho 4,13 và 82 b)tìm chữ số tận cùng của A c) c/m 2A-3 là lũy thừa của 3a: Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4
TA có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13
Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2+\cdots+3^8\right)+\left(3^9+3^{10}+\cdots+3^{16}\right)+\cdots+\left(3^{113}+3^{114}+\cdots+3^{120}\right)\)
\(=3\left(1+3+\cdots+3^7\right)+3^9\left(1+3+\cdots+3^7\right)+\cdots+3^{113}\left(1+3+\cdots+3^7\right)\)
\(=3280\left(3+3^9+\cdots+3^{113}\right)\)
\(=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮82
b: Ta có: \(A=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\)
\(=10\cdot82\cdot4\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮10
=>A có chữ số tận cùng là 0
c:
Sửa đề: 2A+3 là lũy thừa của 3
\(A=3+3^2+3^3+\cdots+3^{120}\)
=>\(3A=3^2+3^3+\cdots+3^{121}\)
=>\(3A-A=3^2+3^3+\cdots+3^{121}-3-3^2-\cdots-3^{120}\)
=>\(2A=3^{121}-3\)
=>\(2A+3=3^{121}\) là lũy thừa của 3
cho A =3+32 +33+....+3100
Tìm số tự nhiên n , biết rằng 2A + 3 = 3n![]()
![]()
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Cho A = 3 + 3 2 + 3 3 + . . . + 3 100 . Tìm số tự nhiên n biết rằng 2A+3= 3 n
A. n=99
B. n=100
C. n=101
D. n=102
Cho: A = 3 + 3 2 + 3 3 + . . . + 3 100
Tìm số tự nhiên n biết rằng: 2A+3 = 3 n
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101