Giá trị của x thỏa mãn:\(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\)là x=.............
Giá trị của x thỏa mãn \(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\)
x = ?
\(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\Rightarrow\left(\left(\frac{2}{3}\right)^x\right)^3=\left(\frac{3}{2}\right)^3\Rightarrow\left(\frac{2}{3}\right)^x=\frac{3}{2}\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{-1}\Rightarrow x=-1\)
Các bạn thân yêu ơi, gia đình olm ơi giúp với
Giá trị của x thỏa mãn : \(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\)
\(\left(\left(\frac{2}{3}\right)^x\right)^3=\frac{27}{8}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\frac{3}{2}\)
\(\Rightarrow x=-1\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\) . Tìm giá trị thỏa mãn của x
số giá trị của x thỏa mãn \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}\) là
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.
Cho 2 số thực x,y dương thỏa mãn \(x^3+y^3=xy-\frac{1}{27}\)
Tính giá trị của biểu thức P=\(\left(x+y+\frac{1}{3}\right)^3-\frac{3}{2}\left(x+y\right)+2016\)
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
Cho các số thực dương x,y,z thỏa mãn xyz = 8. Tìm giá trị nhỏ nhất của \(A=\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y^3}{\left(z+x\right)\left(z+2x\right)}+\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\)
Ta có
\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)
\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)
Tương tự ta có
\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)
\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)
Cộng vế theo vế ta được
\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)
\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)
Dấu = xảy ra khi x = y = z = 2
alibaba nguyễn Đúng rồi! Muốn k cho bạn lắm nhưng không hiểu sao cái nút "ĐÚNG" nó đơ mất rồi :(
Giá trị của x thỏa mãn đẳng thức
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=100x\)
Bài 1 : Giá trị của a trong công thức của hàm số y = f(x) = ax biết |x| và f(1) > f(2) là ...
Bài 2 : Số các giá trị của x thỏa mãn \(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}\) là ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)
Do đó không tồn tại x thỏa mãn.
Bài 1: Với a là số âm thì thỏa mãn nhé =}
Giá trị bé nhất của \(\left|x^2+3\right|+\left|y^2+6\right|=12,5\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)