cho tam giác vuông ABC vuông ở A.2 cạnh kề góc vuông AB=5cm,AC=12cm.Tính cạnh BC?
cho tam giác vuông ABC vuông ở A.2 cạnh kề góc vuông AB=5cm,AC=12cm.Tính cạnh BC?
Cho hình tam giác vuông ABC vuông ở A. Các cạnh kề với góc vuông: AB = 5cm, AC = 12cm. Hãy tính cạnh BC.
Vì : \(\Delta ABC\) vuông tại A (gt)
Theo ĐL Py-ta- go, ta có:
\(BC^2=AB^2+AC^2\\ < =>BC^2=5^2+12^2=13^2\\ =>BC=13\left(cm\right)\)
Vậy: BC= 13 cm
Cho tam giác ABC vuông tại A,AH vuông góc với BC,biết AB=5cm,AC =12cm.Tính HB,HC,AH,BC.
Xét \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AC^2+AB^2\Leftrightarrow BC=\sqrt{AC^2+AB^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)(cm)
Xét \(\Delta ABC\)vuông tại A có AH \(\perp\)BC tại H , ta có :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5^2}{13}=\frac{25}{13}\)(cm)
\(AC^2=HC.BC\Leftrightarrow HC=\frac{AC^2}{BC}=\frac{12^2}{13}=\frac{144}{13}\)(cm)
\(AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=\sqrt{\frac{25}{13}.\frac{144}{13}}=\frac{60}{13}\)(cm)
Vậy ...
Nếu bạn muốn đổi ra số thập phân cũng đc nha nhưng mk để phân số cho gọn
........................................................................................Chúc bạn học tốt.................................................................................................
đặt a = AB = AC
Áp dụng định lý pytogo trong tam giác vuông ta có
\(a^2+a^2=BC^2\Rightarrow2a^2=12^2=144\Rightarrow a^2=72\Leftrightarrow a=\sqrt{72}=6\sqrt{2}\)
vậy, AB = AC = \(6\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
mà AB=AC(ΔABC cân tại A)
nên \(2\cdot AB^2=12^2\)
\(\Leftrightarrow2\cdot AB^2=144\)
\(\Leftrightarrow AB^2=72\)
hay \(AB=6\sqrt{2}cm\)
Ta có: AB=AC(ΔACB vuông cân tại A)
mà \(AB=6\sqrt{2}cm\)(cmt)
nên \(AC=6\sqrt{2}cm\)
Vậy: \(AB=6\sqrt{2}cm\); \(AC=6\sqrt{2}cm\)
cho tam giác ABC vuông ở A.Hai cạnh kề với góc vuông là AC dài 12cm và AB =12cm điểm E nằm trên cạnh AC có AE=1/2 AC từ E kẻ đường song song với AB có cạnh BC tại F tính cạnh EF
Cho tam giác ABC vuông ở A cạnh kề với góc vuông là ac dài 12 cm và AB dài 18 cm điểm E nằm trên cạnh ac có AE = 1/2 BC từ điểm A kẻ đường thẳng song song với AB cắt cạnh BC tại f Tính độ dài đoạn thẳng EF
cho hình tam giác ABC vuông ở A có chu vi 30 cm , biết cạnh góc vuông AB = 5/12 cạnh góc vuông AC ,cạnh BC = 13 cm .Tính diện tích tam giác vuông ABC?
Tổng độ dài hai cạnh AB và AC:
30 - 13 = 17 (cm)
Tổng số phần bằng nhau:
5 + 12 = 17 (phần)
Cạnh AB dài:
17 . 5 : 17 = 5 (cm)
Cạnh AC dài:
17 . 12 : 17 = 12 (cm)
Diện tích tam giác ABC:
5 . 12 : 2 = 30 (cm²)
Tổng độ dài 2 đáy AB và AC là :
30 - 13 = 17 ( cm )
Tổng số phần bằng nhau là
5 + 12 = 17 ( phần )
Cạnh AB dài là
17 : 17 x 5 = 5 ( cm )
Cạnh AC dài là :
17 - 5 = 12 ( cm )
Diện tích hình tam giác vuông ABC là
12 x 5 : 2 = 30 ( m2)
Đáp số : 30 m2
Cho tam giác ABC có AH vuông góc với BC .Biết AB=5cm,AC=5cm,Bc=căn50 a) Tam giác ABC có phải là tam giác vuông không ? b) Chứng minh tam giác AHC cân.Tính độ dài cạnh AH
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)
Cho tam giác ABC vuông tại A cạnh AB = 5cm AC=12 . Từ trung điểm Mcủa cạnh huyền BC Kẻ vuông góc với BC cách cạnh góc vuông tại N
a) Tính MN
b) gọi AH là đường cao của tam giác abc .Tính AH , BH , CH
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)