đặt a = AB = AC
Áp dụng định lý pytogo trong tam giác vuông ta có
\(a^2+a^2=BC^2\Rightarrow2a^2=12^2=144\Rightarrow a^2=72\Leftrightarrow a=\sqrt{72}=6\sqrt{2}\)
vậy, AB = AC = \(6\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
mà AB=AC(ΔABC cân tại A)
nên \(2\cdot AB^2=12^2\)
\(\Leftrightarrow2\cdot AB^2=144\)
\(\Leftrightarrow AB^2=72\)
hay \(AB=6\sqrt{2}cm\)
Ta có: AB=AC(ΔACB vuông cân tại A)
mà \(AB=6\sqrt{2}cm\)(cmt)
nên \(AC=6\sqrt{2}cm\)
Vậy: \(AB=6\sqrt{2}cm\); \(AC=6\sqrt{2}cm\)