Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Huy Hoàng
Xem chi tiết
Nguyễn Trang
17 tháng 10 2015 lúc 23:48

Có đến n số nguyên tố....con số n này đương nhiên vô hạn...vì vậy bài toán này là nan giải~~

duy an tran
Xem chi tiết
Rin Huỳnh
22 tháng 5 2023 lúc 14:11

Giả thuyết Goldbach tam nguyên. Và chưa ai có thể chứng minh điều này.

Yahimato Naruko
Xem chi tiết
Nguyễn Vũ Dũng
20 tháng 12 2015 lúc 15:56

1,-20

2,17

3,97

cho mình mấy tick nha

giang ho dai ca
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
gãi hộ cái đít
12 tháng 3 2021 lúc 19:06

Ta có:

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ gt \(\Rightarrow n,k\ge2\)

Ta có:

\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)       (1)

Mặt khác:

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)

Vậy bộ số (n,k,p)=(2,2,5)

Trần Minh Hoàng
12 tháng 3 2021 lúc 18:34

\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).

Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).

+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\) 

+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)

\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)

\(\Rightarrow6⋮n^2+n-1\).

Không tồn tại n > 2 thoả mãn

Vậy...

 

 

 

Si-Chun
Xem chi tiết
meme
21 tháng 8 2023 lúc 19:41

Bài 1: Thuyết số Goldbach là một bài toán trong lĩnh vực thuyết số, được đặt theo tên của nhà toán học Christian Goldbach. Thuyết số Goldbach đưa ra một giả thuyết rằng tất cả các số nguyên lớn hơn 2 đều có thể biểu diễn được dưới dạng tổng của hai số nguyên tố.

 

Ví dụ: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + , 10 = 3 + 7 hoặc 5 + 5, ...

 

Mặc dù đã có nhiều nỗ lực để chứng minh hoặc phản chứng giả thuyết này, nhưng cho đến nay vẫn chưa có bằng chứng cụ thể. Thuyết số Goldbach vẫn là một bài toán chưa được giải quyết hoàn toàn trong thuyết số hiện đại.

meme
21 tháng 8 2023 lúc 19:42

Để giải biểu thức này, chúng ta có thể thực hiện theo thứ tự các phép toán (còn được gọi là PEMDAS).

 

Đầu tiên, chúng ta đơn giản hóa phép chia: 1/3.

 

1/3 bằng 0,33333 (số thập phân lặp lại).

 

Bây giờ, chúng ta có thể viết lại biểu thức:

 

9 - 3 + 0.33333

 

Tiếp theo, chúng ta trừ 3 từ 9:

 

9 - 3 = 6

 

Cuối cùng, chúng ta thêm 0,33333 vào 6:

 

6 + 0.33333 = 6.33333

 

Vì vậy, kết quả của biểu thức 9 - 3 + 1/3 xấp xỉ 6,33333.

Lan Anh
Xem chi tiết
Lan Anh
8 tháng 10 2023 lúc 20:19

(????????????????????) sao toán lớp bốn khó thế

 

 

 

 

 

 

 

 

nguyễn thành long
8 tháng 10 2023 lúc 20:39

._. :0 :) 

Nguyễn Gia Huy
8 tháng 10 2023 lúc 21:28

Toán 6đó 

Nguyễn Diệu Anh
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết