Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jungkook oppa
Xem chi tiết
Đàm Trần Hải Đăng
Xem chi tiết
Phan PT
Xem chi tiết
Hồng Phúc
23 tháng 1 2021 lúc 11:55

Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)

Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)

Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2

\(\Rightarrow\) vô lí

Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán

Đặng Huỳnh Như
Xem chi tiết
Kiều Vũ Linh
29 tháng 4 2022 lúc 16:06

 Ta có:

\(-2018m>-2018n\)

\(\Rightarrow-2018m.\left(-\dfrac{1}{2018}\right)< -2018n.\left(-\dfrac{1}{2018}\right)\)

\(\Rightarrow m>n\)

b) \(x^2-x\left(x+2\right)>3x-1\)

\(\Leftrightarrow x^2-x^2-2x>3x-1\)

\(\Leftrightarrow-2x-3x>-1\)

\(\Leftrightarrow-5x>-1\)

\(\Leftrightarrow x< \dfrac{1}{5}\)

Vậy S = {\(x\) | \(x< \dfrac{1}{5}\)}

Nguyễn Trần Hoa Cương
29 tháng 4 2022 lúc 16:43

a) Ta có: -2018m > -2018n

            \(\Leftrightarrow-2018m\times\left(\dfrac{-1}{2018}\right)< -2018n\times\left(\dfrac{-1}{2018}\right)\)

            \(\Leftrightarrow\) m < n

 

Ken Kaneki
Xem chi tiết
nguyễn thái bình
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 18:11

Giả sử có 8p-1;8p+1 là SNT

Nếu p = 3 => 8p+1=25 không phải SNT

=> p \(⋮̸3\)

=> 8p  \(⋮̸3\)

Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp

=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)

 

Phạm Khánh An
29 tháng 12 2021 lúc 21:36

 Bài này mình chịu

Khách vãng lai đã xóa
jin rin
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2022 lúc 19:46

Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố

Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)

- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố

- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố

Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố

Sơn Nguyễn Thế
Xem chi tiết
Tran Le Khanh Linh
20 tháng 3 2020 lúc 20:35

Với p=2 => \(\hept{\begin{cases}8p+1=8\cdot2+1=16+1=17\\8p-1=8\cdot2-1=16-1=15\end{cases}}\)

Với p=3 \(\Rightarrow\hept{\begin{cases}8p-1=8\cdot3-1=24-1=23\\8p+1=8\cdot3+1=24+1=25\end{cases}}\)

Nếu p>3 => p có dạng 3k+1 hoặc 3k+2

Với p=3k+1 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+1\right)-1=24k+8-1=24k+7\\8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\end{cases}}\)

Với p=3k+2 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+2\right)-1=24k+16-1=24k+15\\8p+1=8\left(3k+2\right)+1=24k+16+1=24k+17\end{cases}}\)

=> đpcm

Khách vãng lai đã xóa
Phạm Khánh An
29 tháng 12 2021 lúc 21:36

Khó thật 

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
Full Moon
27 tháng 9 2018 lúc 23:19

Ta có:

\(2020\equiv1\left(mod3\right)\)\(\Rightarrow2020^{2020}\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2020}+1\equiv2\left(mod3\right)\)

Lại có:

\(n^3+2018n=n\left(n^2+2018\right)\)

\(+\)Nếu n chia hết cho 3 thì \(n\left(n^2+2018\right)⋮3\)

+) Nếu \(n⋮̸3\)thì \(n^2+2018⋮3\)

Do đó n(n^2+2018) luôn chia hết cho 3

Vậy....