Tìm GTLn và GTnn
a. \(A=-x^2+12x-7\)
c. \(\text{B}=\frac{1}{-9^2+13x-2019}\)
cho biểu thức\(A=\left(\frac{\text{x+1}}{\text{x-1}}-\frac{\text{x-1}}{\text{x+1}}+\frac{\text{x^2-4x-1)}}{\text{x^2-1}}\right)\div\frac{x}{x+2019}\)
a) tìm điều kiện xát định và rút gọn
b) với \(x\in z\)tìm GTLN của biểu thức
mik cần gấp câu b
cho biểu thức \(A=\left(\frac{\text{x+1}}{\text{x-1}}-\frac{\text{x-1}}{\text{x+1}}+\frac{\text{x^2-4x-1}}{\text{x^2-1}}\right)\div\frac{x}{\text{x+2019}}\)
A) tìm đkxd và rút gọn
B) với \(x\in Z\), tìm GTLN của A
giúp mik câu b gấp nhé các bn
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)
ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019
\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)
\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)
b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất
<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất
<=> x = 1
Khi đó A = 2020
Cho biểu thức: \(P=\frac{3x^2-x}{3x+2}:\frac{3x^3-x^2+12x-4}{x+2\left(x+1\right)}\)
\(\text{a) Rút gọn P}\)
\(\text{b) Tìm GTNN và GTLN của P}\)
dk 3x+2
P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)
dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)
P(x2+4) = x <=> Px2-x+4P=0
để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)
Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)
P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)
1) Tìm GTLN và GTNN:
a) A=\(\frac{27-12x}{x^2+9}\)
b) B=\(\frac{8x+3}{4x^2+1}\)
c) C=\(\frac{2x+1}{x^2+2}\)
d) D=\(\frac{3x^2-2x+3}{x^2+1}\)
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
Tìm GTLN của biểu thức sau:
A=\(\frac{12x-9}{x^2+1}\)
B=\(\frac{12x+3}{x^2+3}\)
Tìm GTLN của biểu thức sau:
A=\(\frac{12x-9}{x^2+1}\)
B=\(\frac{12x+3}{x^2+3}\)
Tìm GTNN và GTLN của \(A=\frac{27-12x}{x^2+9}\)
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
1.tìm GTNN
\(A=\frac{x^2-1}{x^2+1}\)
2.tìm GTLN
\(B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)
\(\text{3.tính GT của đa thức }A\left(x\right)=x+x^3+x^5+......+x^{2019}\text{ tại x=-1}\)
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
Bài 3: (chắc thế này quá)
\(A\left(x\right)=x^1+x^3+x^5+...+x^{2019}\)
Dãy số trên có số số hạng là: (2019-1) : 2 + 1 = 1010 số hạng.
Thay x = -1 vào A(x) được: \(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+..+\left(-1\right)\) (1010 số -1)
\(=1010.\left(-1\right)=-1010\)
Vậy giá trị đa thức A(x) tại x = -1 là -1010