Viết số 100 thành tổng các số nguyên dương liên tiếp
Viêt số 100 thành tổng các số nguyên liên tiếp
Hãy viết số 100 thành :
a, Tổng các số lẻ liên tiếp
b, Tổng các số tự nhiên liên tiếp
a)1+3+5+7+9+11+13+15+17+19=100
b)9+10+11+12+13+14+15+16=100
chúc bạn học giỏi
Có tồn tại hay không 30 số nguyên viết liền nhau thành 1 hàng ngang mà tổng 5 số nguyên liên tiếp bất kì là một số nguyên âm và tổng 7 số nguyên liên tiếp bất kì là một số nguyên dương
mọi người giải chi tiết cho em một chút nhé
Viết số 100 thành tổng của các số tự nhiên liên tiếp.
Giả sử \(100\)viết được thành tổng của \(k\)số tự nhiên liên tiếp, số hạng đầu tiên là \(n+1\).
Ta có: \(100=\left(n+1\right)+\left(n+2\right)+...+\left(n+k\right)\)
\(100=kn+\frac{k\left(k+1\right)}{2}\)
\(200=k\left(2n+k+1\right)\)
Suy ra \(k,2n+k+1\)đều là ước của \(200\).
Ta có \(200=2^3.5^2\), \(k< 2n+k+1\), \(k\)và \(2n+k+1\)khác tính chẵn lẻ nên ta có bảng sau:
k | 1 | 5 | 8 |
2n+k+1 | 200 | 40 | 25 |
n | 99 | 17 | 8 |
Vậy ta có các cách biểu diễn số \(100\)thành tổng các số tự nhiên liên tiếp như sau:
- \(100=100\).
- \(100=18+19+20+21+22\).
- \(100=9+10+11+12+13+14+15+16\).
giả sử k là số tự nhiên liên tiếp n+1,n+2,...n+k . n,k lớn hơn hoặc bằng 2 cố tổng bằng 100
ta có (n+1)+(n+2).k/2=100
=>(2n+k+1).k=200
nhận xét 2n+k+1>k;(2n+k +1)-k=2n+1 là một số lẻ
từ đó ta có các trường hợp
k=5=>n=17,k=8=>n=8
giả sử k là số tự nhiên liên tiếp , số hạng đầu tiên là n+1
(n+1)+(n+2).k/2=100
=>(2n+k+1).k=200
k<2n+k+1 và 2n+k+1là 1 số lẻ
=>k=5-> n=17
k=8-> n=18
Tìm các số nguyên n thỏa mãn n4 + 8n + 11 có thể viết thành tích của hai hay nhiều số nguyên dương liên tiếp.
Viết số 1304 thành tổng của các số nguyên liên tiếp
Viết số 2012 thành tổng các số nguyên liên tiếp. (Phương trình nghiệm nguyên lớp 9)
248 + 249 + 250 + 251 + 252 + 253 + 254 + 255
hãy viết 100 thành tổng các số lẻ liên tiếp
Hai số lẻ liên tiếp đó là:
49+51=100
Vì đó là 2 số lẻ liên tiếp
Giả sử số 100 được viết thành \(k\) số lẻ liên tiếp, vì tổng của \(k\) số lẻ là 100 (số chẵn) nên k phải là số chẵn và \(k\)≥2.
Gọi số hạng đầu tiên của dãy là n (n là số tự nhiên lẻ). Khi đó:
100=n+(n+2)+…+(n+2(k−1))
100=nk+(2+4+…+2(k−1))
100=nk+2(1+2+…+(k−1))
100=nk+2(k−1+12(k−1))
100=nk+k(k−1)
100=k(n+k−1)
Từ đây suy ra k là ước của 100.
Vì k là số chẵn nên k có thể nhận các giá trị: 2;4;10;20;50
∙ k=2. Ta có: 100=2(n+2−1). Do đó n=49, thỏa mãn.
Vậy 100=49+51.
∙ k=4. Ta có: 100=4(n+4−1). Do đó n=22, loại vì n là số lẻ.
∙ k=10. Ta có: 100=10(n+10−1). Do đó n=1, thỏa mãn.
Vậy 100=1+3+5+7+9+11+13+15+17+19.
∙ k=20. Ta có: 100=20(n+20−1). Do đó n=−14, loại.
∙ k=50. Ta có: 100=50(n+50−1). Do đó n=−47, loại.
Kết luận: Có hai cách viết thỏa mãn đó là:
100=49+51=1+3+5+7+9+11+13+15+17+19.
Cách làm của mình giống Nguyễn Như Quỳnh
hãy viết 100 thành tổng các số lẻ liên tiếp
Giả sử số 100 được viết thành \(k\) số lẻ liên tiếp, vì tổng của \(k\) số lẻ là 100 (số chẵn) nên k phải là số chẵn và \(k\)≥2.
Gọi số hạng đầu tiên của dãy là n (n là số tự nhiên lẻ). Khi đó:
100=n+(n+2)+…+(n+2(k−1))
100=nk+(2+4+…+2(k−1))
100=nk+2(1+2+…+(k−1))
100=nk+2(k−1+12(k−1))
100=nk+k(k−1)
100=k(n+k−1)
Từ đây suy ra k là ước của 100.
Vì k là số chẵn nên k có thể nhận các giá trị: 2;4;10;20;50
∙ k=2. Ta có: 100=2(n+2−1). Do đó n=49, thỏa mãn.
Vậy 100=49+51.
∙ k=4. Ta có: 100=4(n+4−1). Do đó n=22, loại vì n là số lẻ.
∙ k=10. Ta có: 100=10(n+10−1). Do đó n=1, thỏa mãn.
Vậy 100=1+3+5+7+9+11+13+15+17+19.
∙ k=20. Ta có: 100=20(n+20−1). Do đó n=−14, loại.
∙ k=50. Ta có: 100=50(n+50−1). Do đó n=−47, loại.
Kết luận: Có hai cách viết thỏa mãn đó là:
100=49+51=1+3+5+7+9+11+13+15+17+19.
CMR: Số A= 12\(\sqrt{\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1}\) +23 với mọi n là số nguyên dương có thể viết được thành tổng các bình phương của ba số nguyên dương lẻ liên tiếp.
Ta xét : \(\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+1=\left[\left(n-1\right)\left(n+2\right)\right].\left[n\left(n+1\right)\right]+1\)
\(=\left(n^2+n+2\right)\left(n^2+n\right)+1=\left(n^2+n\right)^2+2\left(n^2+n\right)+1=\left(n^2+n+1\right)^2\)
Suy ra \(A=12\sqrt{\left(n^2+n+1\right)^2}+23=12\left(n^2+n+1\right)+23=\left(2n+1\right)^2+\left(2n-3\right)^2+\left(2n+5\right)^2\)
Hãy viết số 100 thành tổng của các số lẻ liên tiếp
Có nhiều cách bạn àk
A=1+3+5+7+9+11+13+15+17+19=49+51