CHứng minh rằng: C=\(\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< 3\)
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Chứng minh rằng :
D=\(\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6++...+\sqrt[3]{6}}}}< 2\)
\(D=\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+\sqrt[3]{6}}}}}\)
\(\Rightarrow D< \sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+\sqrt[3]{8}}}}}\)
\(\Rightarrow D< \sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}\)
\(\Rightarrow D< \sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{8}}}}\)
\(\Rightarrow D< \sqrt[3]{6+\sqrt[3]{8}}=\sqrt[3]{6+2}=\sqrt[3]{8}\)
\(\Rightarrow D< 2\) (đpcm)
Chứng minh rằng: \(\frac{1}{6}< \frac{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}}{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}}< \frac{5}{27}\)
Trong đó, biểu thức ở tử chứa n dấu căn, biểu thức ở mẫu chứa n-1 dấu căn.
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
Chứng minh rằng:
\(B=\sqrt{5\sqrt{5}\sqrt{5}...\sqrt{5}\sqrt{5}}+\sqrt{6+\sqrt{6}+\sqrt{6}+...\sqrt{6}+\sqrt{6}}< 8\)
Cho \(P=\frac{3-\sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6}}}}}{3-\sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6}}}}}\) ( trên tử có 2021 dấu căn, dưới mẫu có 2020 dấu căn)
Chứng minh rằng : \(\frac{1}{6}< P< \frac{5}{29}\)
\(\text{Đặt: }\sqrt{6+\sqrt{6+\sqrt{6+....}}}=a\Rightarrow a^2=6+a\Leftrightarrow a^2-a-6=\left(a-3\right)\left(a+2\right)=0\)
thấy ngay a không thể đạt giá trị âm nên
a=3 thay vào P=0 (vô lí) -> đề sai.
Chứng minh rằng : \(\sqrt[4]{49+\sqrt{20\sqrt{6}}}+\sqrt[4]{49-\sqrt{20\sqrt{6}}}=2\sqrt{3}\)
Ta có \(\sqrt[4]{49+20\sqrt{6}}=\sqrt[4]{25+10\sqrt{24}+24}=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}\)
\(=\sqrt[4]{\left(\sqrt{3}+\sqrt{2}\right)^4}=\sqrt{3}+\sqrt{2}\)
Tương tự : \(\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\) ( Do \(\sqrt{3}>\sqrt{2}\) )
Suy ra \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
Chứng minh rằng \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+\frac{2.1}{3}\sqrt{2.3}-\frac{4.1}{2}\sqrt{3.2}\)
\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\)
\(=\sqrt{6}\left(\frac{9}{6}+\frac{4}{6}-\frac{12}{6}\right)=\sqrt{6}.\frac{1}{6}=\frac{\sqrt{6}}{6}\)
Vậy \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
Chứng minh rằng: \(\sqrt[3]{\sqrt{\frac{2303}{27}+6}}-\sqrt[3]{\sqrt{\frac{2303}{27}-6}}\)6 là các số nguyên
Bạn không sửa thì m sửa.
Sửa đề: \(P=\sqrt[3]{\sqrt{\frac{2303}{27}}+6}-\sqrt[3]{\sqrt{\frac{2303}{27}}-6}\)
\(P^3=\sqrt{\frac{2303}{27}}+6-\left(\sqrt{\frac{2303}{27}}-6\right)-\frac{3.11.P}{3}\)
\(\Leftrightarrow P^3=12-11P\)
\(\Leftrightarrow P^3+11P-12=0\)
\(\Leftrightarrow\left(P-1\right)\left(P^2+P+12\right)=0\)
Vì \(P^2+P+12>0\) nên ta có
\(P=1\)
theo tớ là cậu chép sai đề rồi cậu chép lại đi