Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Thắng
Xem chi tiết
Ngọc Lục Bảo
Xem chi tiết
Đinh Anh Thư
6 tháng 1 2016 lúc 0:00

Em mới lớp 6 thui! Anh thông cảm em ko giải đc!

phan quoc
6 tháng 1 2016 lúc 5:49

minh cung the

 

Hà Văn Cảnh
6 tháng 1 2016 lúc 9:50

xét các số có mũ lên vẫn bằng chính nó có -1 và 1.mà -1+1+1=1.nên ta suy ra:a=-1;b=1;c=1.thay vào biểu thức:-1^2011+1^2012+1^2013=1.vậy a^2011+b^2012+c^2013=1.đề dài nên nhiều người lười làm.tick ra thi khó gì

Ngọc Anh Nguyễn
Xem chi tiết
HT.Phong (9A5)
11 tháng 3 2023 lúc 19:21

Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)

\(\rightarrow a=2012k,b=2013k,c=2014k\)

Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)

Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)

\(\rightarrow\) Vế trái = vế phải = \(4k^2\)

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 17:47

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)

Đoàn Trần Thanh Ngân
Xem chi tiết
Đoàn Trần Thanh Ngân
22 tháng 8 2016 lúc 21:26

chán ghê hk ai giúp hết

Thị Ninh Trần
Xem chi tiết
Edogawa Conan
Xem chi tiết
Hoàng Thảo Linh
6 tháng 5 2018 lúc 10:22

a )

A = (-2.a+3.b-4.c)-(-2.a-3.b- 4.c)

A = -2a + 3b - 4c + 2a +3b + 4c

A = (-2a+2a)+(3b+3b) +(-4c+4c)

A = 6b

b) bn tự thay vào tính thui

Tiến Hoàng Minh
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
8 tháng 2 2022 lúc 11:21

\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)

Lê Tán Gia Hoàng
8 tháng 2 2022 lúc 11:19

s = e>2025

Quandung Le
Xem chi tiết
Thanh Tùng DZ
17 tháng 12 2017 lúc 17:26

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

l҉o҉n҉g҉ d҉z҉
27 tháng 8 2020 lúc 20:30

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)

A = 4( a - b )( b - c ) - ( c - a )2

= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2

= 4.( -k ).( -k ) - ( 2k )2

= 4k2 - 4k2 = 0

Khách vãng lai đã xóa