Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc An Như
Xem chi tiết
dream XD
Xem chi tiết
Dan Nguyen Huu
Xem chi tiết
Lưu Võ Tâm Như
9 tháng 8 2021 lúc 14:47

undefined

Anh Clodsomnia
Xem chi tiết
Anh Chau
Xem chi tiết
Nguyễn Huy Tú
8 tháng 12 2016 lúc 8:53

B A C O E D 1 2 3 4 1 2 1 2

Giải:
Kẻ OI là tia phân giác của \(\widehat{AOC}\)

Xét \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+60^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^o\)

Ta có: \(\frac{1}{2}\left(\widehat{A}+\widehat{C}\right)=\frac{1}{2}.120^o\)

\(\Rightarrow\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{C}=60^o\)

\(\Rightarrow\widehat{A_1}+\widehat{C_1}=60^o\)

Xét \(\Delta AOC\) có: \(\widehat{A_1}+\widehat{C_1}+\widehat{AOC}=180^o\)

\(\Rightarrow60^o+\widehat{AOC}=180^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}\left(=\frac{1}{2}\widehat{AOC}\right)\)

\(\Rightarrow\widehat{O_2}=\widehat{O_3}=60^o\)

Ta có: \(\widehat{O_4}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\) )

\(\Rightarrow\widehat{O_4}=60^o\)

\(\widehat{O_1}=\widehat{A_1}+\widehat{C_1}\) ( góc ngoài \(\Delta AOC\)

\(\Rightarrow\widehat{O_1}=60^o\)

Xét \(\Delta EOA,\Delta IOA\) có:

\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)

AO: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(=60^o\right)\)

\(\Rightarrow\Delta EOA=\Delta IOA\left(g-c-g\right)\)

\(\Rightarrow OE=OI\) ( cạnh t/ứng ) (1)

Xét \(\Delta DOC,\Delta IOC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

OC: cạnh chung

\(\widehat{O_3}=\widehat{O_4}\left(=60^o\right)\)

\(\Rightarrow\Delta DOC=\Delta IOC\left(g-c-g\right)\)

\(\Rightarrow OD=OI\) ( cạnh t/ứng ) (2)

Từ (1) và (2) \(\Rightarrow OE=OD\left(=OI\right)\)

Vậy \(OE=OD\)

 

 

 

 

Best Friend Forever
Xem chi tiết
Nguyễn Linh Chi
6 tháng 2 2020 lúc 20:37

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

Khách vãng lai đã xóa
Nguyễn Linh Chi
6 tháng 2 2020 lúc 21:53

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)

Khách vãng lai đã xóa
Đào Hữu Tuấn
Xem chi tiết
Trần Hồ Thùy Trang
11 tháng 2 2016 lúc 16:29

Cho cái hình đi bn....K có hình giải kiểu chi.

Ngô Quỳnh Anh
Xem chi tiết
Huyền Trần
Xem chi tiết