cho a+b=c+d và \(a^2+b^2=c^2+d^2\) chứng minh \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
Cho a,b,c,d thỏa mãn a+b=c+d; \(a^2\)+\(b^2\)=\(c^2\)+\(d^2\)
Chứng minh rằng \(a^{2013}\)+\(b^{2013}\)+\(c^{2013}\)+\(d^{2013}\)
Cho a,b,c,d thỏa mãn a + b = c + d; \(a^2+b^2=c^2+d^2\)
Chứng minh rằng \(^{a^{2013}+b^{2013}=c^{2013}+d^{2013}}\)
Cho a,b,c,d thỏa mãn a+b=c+d ; \(a^2+b^2=c^2+d^2\)
Chứng minh rằng : \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
Cho a+b=c+d và \(a^2+b^2=c^2+d^2\)
Chứng minh \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
a+b=c+d
(a+b)2=(c+d)2
a2+2ab+b2=c2+2cd+d2
ma a2+b2=c2+d2
2ab=2cd nen -2ab=-2cd
a2+b2=c2+d2
a2-2ab+b2=c2-2cd+d2
(a-b)2=(c-d)2
a-b=c-d hoac a-b=d-c
ma a+b=c+d
nen a=c hoac a=d
nen a=c;b=d hoac a=d;b=c
nen a2013=c2013;b2013=d2013 hoac a2013=d2013;b2013=c2013
Vay a2013+b2013=c2013+d2013 trong ca 2 truong hop
QUA DE
Cho a,b,c,d thỏa mãn a+b=c+d;a2+b2=c2+d2.Chứng minh rằng a2013+b2013=c2013+d2013
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Cho a,b,c,d thỏa mãn a+b=c+d; a2+b2=c2+d2
Chứng minh a2013+b2013=c2013+d2013
cho a,b,c,d thỏa mãn a+b=c+d ; a2 + b2 = c2 + d2
chứng minh a2013 + b2013 = c2013 + d2013
cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)chứng minh \(\frac{2.a^{2013}+5.b^{2013}}{2.c^{2013}+5.d^{2013}}=\frac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\)ghi cách giải lớp 7, dễ hiểu (ai nhanh thì tk)
\(\frac{a}{b}=\frac{c}{d}\)=>\(\left(\frac{a}{b}\right)^{2013}=\left(\frac{c}{d}\right)^{2013}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}\)=>\(\frac{2.a^{2013}}{2.b^{2013}}=\frac{5.c^{2013}}{5.d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{2.a^{2013}}{2.b^{2013}}=\frac{5.c^{2013}}{5.d^{2013}}\)=\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}\)=\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\) (\(\frac{2}{2}=1;\frac{5}{5}=1\)) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=>\(\left(\frac{a}{b}\right)^{2013}=\left(\frac{c}{d}\right)^{2013}=\left(\frac{a+b}{c+d}\right)^{2013}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}=\frac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\) (2)
Từ (1) và (2)
=>\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\)=\(\frac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{5b}=\frac{2c}{5d}\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}\Rightarrow\frac{2a^{2013}}{2c^{2013}}=\frac{5b^{2013}}{5d^{2013}}=\frac{2a^{2013}+5b^{2013}}{2c^{2013}+5d^{2013}}\)
Nhờ mọi người giải giúp mình với
Bài 1: cho a+b=c+d và a^3+b^3=c^3+d^3 chứng minh rằng a^2019+b^2019=c^2019+d^2019
Bài 2: chứng minh rằng nếu a^3+b^3+c^3 = (a+b+c)^3 thì a^2013+b^2013+c^2013 = (a+b+c)^2013